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Abstract

This comprehensive guide covers the fundamentals of software verification,
structured around four main pillars: program semantics, abstract interpre-
tation, dataflow analysis, and verification tools. The material progresses
from theoretical foundations of program behavior modeling through practi-
cal applications in static analysis and verification. Formal definitions and
theorems are complemented with examples and exercises to facilitate deeper
understanding of these essential topics in computer science.



Contents

1 Program Semantics 6
1.1 Introduction to Software Verification . . . . . . . . . . . . . . 6
1.2 Program Semantics . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Approaches to Semantics . . . . . . . . . . . . . . . . 7
1.2.2 Syntax of the While Language . . . . . . . . . . . . . 7
1.2.3 Semantic Categories . . . . . . . . . . . . . . . . . . . 8
1.2.4 Operational Semantics . . . . . . . . . . . . . . . . . . 8
1.2.5 Denotational Semantics . . . . . . . . . . . . . . . . . 10
1.2.6 Semantic Properties and Equivalence . . . . . . . . . . 12
1.2.7 Extensions to the While Language . . . . . . . . . . . 13

1.3 Abstract Interpretation . . . . . . . . . . . . . . . . . . . . . 14
1.3.1 Introduction to Abstract Interpretation . . . . . . . . 14
1.3.2 Galois Connections . . . . . . . . . . . . . . . . . . . . 14
1.3.3 Abstract Domains . . . . . . . . . . . . . . . . . . . . 15
1.3.4 Abstract Semantics . . . . . . . . . . . . . . . . . . . . 16
1.3.5 Widening and Narrowing . . . . . . . . . . . . . . . . 16
1.3.6 Soundness and Completeness . . . . . . . . . . . . . . 17

1.4 Dataflow Analysis . . . . . . . . . . . . . . . . . . . . . . . . 17
1.4.1 Control Flow Graphs . . . . . . . . . . . . . . . . . . . 17
1.4.2 Dataflow Equations . . . . . . . . . . . . . . . . . . . 18
1.4.3 Forward and Backward Analysis . . . . . . . . . . . . 18
1.4.4 May and Must Analysis . . . . . . . . . . . . . . . . . 18
1.4.5 Common Dataflow Analyses . . . . . . . . . . . . . . . 19
1.4.6 Solving Dataflow Equations . . . . . . . . . . . . . . . 20
1.4.7 Monotone Frameworks . . . . . . . . . . . . . . . . . . 20

1.5 Verification Tools . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.5.1 Categories of Verification Tools . . . . . . . . . . . . . 20
1.5.2 Specific Verification Tools . . . . . . . . . . . . . . . . 21
1.5.3 Practical Verification Example . . . . . . . . . . . . . 22
1.5.4 Challenges and Limitations . . . . . . . . . . . . . . . 23

1.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1



2 Denotational Semantics 24
2.1 Introduction to Denotational Semantics . . . . . . . . . . . . 24

2.1.1 Key Principles of Denotational Semantics . . . . . . . 24
2.2 Direct Style Denotational Semantics for While . . . . . . . . 24

2.2.1 Basic Semantic Function . . . . . . . . . . . . . . . . . 25
2.2.2 Semantic Equations . . . . . . . . . . . . . . . . . . . 25
2.2.3 Helper Notations . . . . . . . . . . . . . . . . . . . . . 25

2.3 Fixed Points and While Loops . . . . . . . . . . . . . . . . . 25
2.3.1 The Fixed Point Problem . . . . . . . . . . . . . . . . 26
2.3.2 Requirements for FIX . . . . . . . . . . . . . . . . . . 26

2.4 Order Theory and Fixed Points . . . . . . . . . . . . . . . . . 26
2.4.1 Partially Ordered Sets . . . . . . . . . . . . . . . . . . 26
2.4.2 Ordering on Partial Functions . . . . . . . . . . . . . . 27
2.4.3 Chains and Upper Bounds . . . . . . . . . . . . . . . . 27
2.4.4 Chain Complete Partial Orders . . . . . . . . . . . . . 27

2.5 Continuous Functions and Fixed Point Theorem . . . . . . . 27
2.5.1 Monotone and Continuous Functions . . . . . . . . . . 27
2.5.2 The Fixed Point Theorem . . . . . . . . . . . . . . . . 28
2.5.3 Auxiliary Lemmas for Continuity . . . . . . . . . . . . 28

2.6 Well-definedness of Denotational Semantics . . . . . . . . . . 28
2.7 Equivalence of Semantic Approaches . . . . . . . . . . . . . . 28
2.8 Program Equivalence in Denotational Semantics . . . . . . . 29
2.9 Extensions and Applications . . . . . . . . . . . . . . . . . . . 29

2.9.1 Denotational Semantics of Additional Constructs . . . 29
2.9.2 Example: Factorial Program . . . . . . . . . . . . . . 29

2.10 Conclusion and Further Readings . . . . . . . . . . . . . . . . 30

3 Static Program Analysis 31
3.1 Introduction to Static Program Analysis . . . . . . . . . . . . 31

3.1.1 Definition and Applications . . . . . . . . . . . . . . . 31
3.2 Program Representation . . . . . . . . . . . . . . . . . . . . . 32

3.2.1 Program Points . . . . . . . . . . . . . . . . . . . . . . 32
3.2.2 Control Flow Graph . . . . . . . . . . . . . . . . . . . 32

3.3 Static Analysis Principles . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Parity Analysis Example . . . . . . . . . . . . . . . . . 33
3.3.2 Precision and Correctness . . . . . . . . . . . . . . . . 34

3.4 Static Analysis and Compiler Optimization . . . . . . . . . . 35
3.4.1 Optimization Techniques . . . . . . . . . . . . . . . . 35
3.4.2 Limitations of Optimization . . . . . . . . . . . . . . . 35

3.5 Designing Static Analyses . . . . . . . . . . . . . . . . . . . . 35
3.5.1 Static Analysis Techniques . . . . . . . . . . . . . . . 36

3.6 Mathematical Foundations: Lattices and Fixpoints . . . . . . 36
3.6.1 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.6.2 Complete Lattices and CPOs . . . . . . . . . . . . . . 37

2



3.6.3 Fixpoints . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7 Abstract Interpretation . . . . . . . . . . . . . . . . . . . . . 38

3.7.1 Basic Concepts . . . . . . . . . . . . . . . . . . . . . . 38
3.7.2 Abstraction and Concretization . . . . . . . . . . . . . 38
3.7.3 Sign Domain Example . . . . . . . . . . . . . . . . . . 39
3.7.4 Correctness of Abstract Operations . . . . . . . . . . . 39

3.8 Abstract Denotational Semantics . . . . . . . . . . . . . . . . 40
3.8.1 Collecting Semantics . . . . . . . . . . . . . . . . . . . 40
3.8.2 Abstract Domains . . . . . . . . . . . . . . . . . . . . 40
3.8.3 Correctness of Abstract Semantics . . . . . . . . . . . 41
3.8.4 Sign Domain Example . . . . . . . . . . . . . . . . . . 41

3.9 Interval Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.9.1 Interval Domain . . . . . . . . . . . . . . . . . . . . . 41
3.9.2 Widening for Interval Analysis . . . . . . . . . . . . . 42
3.9.3 Practical Applications of Abstract Interpretation . . . 42

3.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4 Abstract Interpretation with Control Flow Graphs 44
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2 Generalities and Notations . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.3 Concrete Semantics . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3.1 Forward Concrete Semantics . . . . . . . . . . . . . . 46
4.3.2 Resolution . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3.3 Resolution Example . . . . . . . . . . . . . . . . . . . 48
4.3.4 Limit to Automation . . . . . . . . . . . . . . . . . . . 48

4.4 Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4.1 Numerical Abstract Domains . . . . . . . . . . . . . . 49
4.4.2 Abstract Semantics . . . . . . . . . . . . . . . . . . . . 50
4.4.3 Iteration Strategy . . . . . . . . . . . . . . . . . . . . 51
4.4.4 Abstract Analysis . . . . . . . . . . . . . . . . . . . . 51
4.4.5 Exact and Best Abstractions . . . . . . . . . . . . . . 51

4.5 Non-Relational Domains . . . . . . . . . . . . . . . . . . . . . 52
4.5.1 Value Abstraction . . . . . . . . . . . . . . . . . . . . 52
4.5.2 The Sign Domain . . . . . . . . . . . . . . . . . . . . . 55
4.5.3 The Constant Domain . . . . . . . . . . . . . . . . . . 56
4.5.4 The Interval Domain . . . . . . . . . . . . . . . . . . . 59
4.5.5 The Congruence Domain . . . . . . . . . . . . . . . . 64

4.6 Reduced Products of Domains . . . . . . . . . . . . . . . . . . 66
4.6.1 Non-Reduced Product of Domains . . . . . . . . . . . 66
4.6.2 Fully-Reduced Product . . . . . . . . . . . . . . . . . 67

4.7 Relational Domains . . . . . . . . . . . . . . . . . . . . . . . . 67
4.7.1 Linear Equality Domain . . . . . . . . . . . . . . . . . 67
4.7.2 Polyhedron Domain . . . . . . . . . . . . . . . . . . . 68

3



4.7.3 Zone Domain . . . . . . . . . . . . . . . . . . . . . . . 69
4.8 Summary and Comparison of Domains . . . . . . . . . . . . . 70
4.9 Practical Considerations . . . . . . . . . . . . . . . . . . . . . 71

4.9.1 Widening Strategies . . . . . . . . . . . . . . . . . . . 71
4.9.2 Domain Selection Guidelines . . . . . . . . . . . . . . 71
4.9.3 Implementation Considerations . . . . . . . . . . . . . 72

4.10 Real-World Applications . . . . . . . . . . . . . . . . . . . . . 72
4.11 Advanced Topics . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.11.1 Handling Advanced Language Features . . . . . . . . 73
4.11.2 Trace Partitioning . . . . . . . . . . . . . . . . . . . . 73
4.11.3 Modular Analysis . . . . . . . . . . . . . . . . . . . . . 74

4.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 Advanced Topics in Software Verification 77
5.1 Efficient Fixpoint Computation . . . . . . . . . . . . . . . . . 77

5.1.1 Fixpoint Algorithms . . . . . . . . . . . . . . . . . . . 77
5.1.2 Example: Sign Analysis with Different Algorithms . . 79

5.2 Neural Network Verification . . . . . . . . . . . . . . . . . . . 80
5.2.1 Introduction to Neural Networks . . . . . . . . . . . . 80
5.2.2 The Need for Neural Network Verification . . . . . . . 81
5.2.3 Abstract Interpretation for Neural Networks . . . . . 82

5.3 Advanced Abstract Domains for Neural Networks . . . . . . . 84
5.3.1 Beyond Intervals: The Zonotope Domain . . . . . . . 84
5.3.2 The AI² Framework . . . . . . . . . . . . . . . . . . . 85

5.4 Applications of Formal Verification for Neural Networks . . . 85
5.4.1 Robustness Certification . . . . . . . . . . . . . . . . . 85
5.4.2 Safety Verification . . . . . . . . . . . . . . . . . . . . 86
5.4.3 Evaluating Defense Mechanisms . . . . . . . . . . . . 86

5.5 Conclusion and Future Directions . . . . . . . . . . . . . . . . 86
5.6 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6 Completeness in Abstract Interpretation 88
6.1 Introduction to Completeness . . . . . . . . . . . . . . . . . . 88
6.2 Soundness versus Completeness . . . . . . . . . . . . . . . . . 88

6.2.1 Defining Soundness and Completeness . . . . . . . . . 88
6.2.2 The Value of Completeness . . . . . . . . . . . . . . . 89

6.3 Concrete and Abstract Models . . . . . . . . . . . . . . . . . 89
6.3.1 The Concrete Model . . . . . . . . . . . . . . . . . . . 89
6.3.2 Abstraction Approaches . . . . . . . . . . . . . . . . . 89

6.4 Theoretical Foundations of Completeness . . . . . . . . . . . 90
6.4.1 Galois Connections and Best Correct Approximations 90
6.4.2 Abstract Join Completeness . . . . . . . . . . . . . . . 90

6.5 Completeness Classes . . . . . . . . . . . . . . . . . . . . . . . 91

4



6.5.1 Definition of Completeness Classes . . . . . . . . . . . 91
6.5.2 Properties of Completeness Classes . . . . . . . . . . . 91

6.6 Completeness Analysis for Program Constructs . . . . . . . . 91
6.6.1 Boolean Guards and Tests . . . . . . . . . . . . . . . . 91
6.6.2 Assignments . . . . . . . . . . . . . . . . . . . . . . . 92

6.7 Proving Completeness . . . . . . . . . . . . . . . . . . . . . . 92
6.7.1 Core Proof System . . . . . . . . . . . . . . . . . . . . 92
6.7.2 Challenges in Automating Completeness Proofs . . . . 93

6.8 Examples of Completeness Analysis . . . . . . . . . . . . . . 93
6.8.1 Complete and Incomplete Loop Examples . . . . . . . 93
6.8.2 Relational Domain Example . . . . . . . . . . . . . . . 94

6.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5



Chapter 1

Program Semantics

1.1 Introduction to Software Verification

Software verification encompasses formal techniques for proving or disprov-
ing the correctness of software systems with respect to specified properties.
Unlike testing, which can only demonstrate the presence of bugs but not
their absence, formal verification aims to mathematically prove that a sys-
tem satisfies its requirements under all possible scenarios.

The field combines theoretical computer science with practical engineer-
ing concerns, addressing questions such as:

• Does the program terminate for all valid inputs?

• Does the program correctly implement its specification?

• Are there any inputs that could cause unexpected behavior?

• Can we guarantee the absence of certain classes of errors?

This course focuses on four interconnected areas:

1. Program Semantics: Mathematical models that precisely define the
meaning and behavior of programs.

2. Abstract Interpretation: A framework for approximating program
semantics to make analysis computationally feasible.

3. Dataflow Analysis: Techniques to determine information about pro-
gram states at different program points.

4. Verification Tools: Practical implementations of these theories to
verify real-world software.
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1.2 Program Semantics

Program semantics provides formal, mathematical models of the meaning
of programs. These models allow us to reason rigorously about program
behavior, establish equivalence between programs, and verify correctness
properties.

1.2.1 Approaches to Semantics

There are three main approaches to defining program semantics:

• Operational Semantics: Describes program execution as step-by-
step state transitions.

• Denotational Semantics: Maps programs directly to mathematical
functions representing their input-output behavior.

• Axiomatic Semantics: Focuses on logical assertions about program
states before and after execution.

The choice of semantic approach depends on the properties we wish to
analyze and the level of abstraction appropriate for our goals.

1.2.2 Syntax of the While Language

Throughout this course, we’ll use a simple imperative language called While
as our primary example. The While language has the following syntax:

S ::= x := a | skip | S1;S2 | if b then S1 else S2 | while b do S

Where:

• a represents arithmetic expressions

• b represents boolean expressions

• x represents variables

Syntactic Categories

The complete syntactic categories for While are:

• Numerals: n ∈ Num

• Variables: x ∈ Var

• Arithmetic expressions: a ∈ Aexp

a ::= n | x | a1 + a2 | a1 ∗ a2 | a1 − a2
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• Boolean expressions: b ∈ Bexp

b ::= true | false | a1 = a2 | a1 ≤ a2 | ¬b | b1 ∧ b2

• Statements: S ∈ Stm

S ::= x := a | skip | S1;S2 | if b then S1 else S2 | while b do S

1.2.3 Semantic Categories

To define the meaning of programs, we need to establish mathematical struc-
tures that represent the computational concepts:

• Natural numbers: N = {0, 1, 2, . . .}

• Truth values: T = {tt, ff}

• States: State = Var→ N

A state s ∈ State is a function that maps variables to their values. We
use the notation:

• s x to look up the value of variable x in state s

• s[y 7→ v] to denote state update, creating a new state that is like s
except that variable y is mapped to value v

Formally, state update is defined as:

(s[y 7→ v]) x =

{
v if x = y

s x if x ̸= y

1.2.4 Operational Semantics

Operational semantics focuses on modeling how programs execute step by
step. There are two main approaches:

• Natural semantics (big-step semantics): Describes how the overall re-
sult of computation is obtained

• Structural operational semantics (small-step semantics): Describes in-
dividual steps of computation
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Natural Semantics

Natural semantics describes the overall input-output relation of program
execution. It is defined by a transition system (, T,→) where:

• = {(S, s) | S ∈While, s ∈ State} ∪ State

• T = State

• →⊆ {(S, s) | S ∈While, s ∈ State} × State

A typical transition has the form (S, s) → s′ where S is the program, s
is the initial state, and s′ is the final state.

The transition relation is defined inductively with the following rules:

(x := a, s)→ s[x 7→ A[[a]]s]

(skip, s)→ s

(S1, s)→ s′ (S2, s
′)→ s′′

(S1;S2, s)→ s′′

(S1, s)→ s′ B[[b]]s = tt

(if b then S1 else S2, s)→ s′

(S2, s)→ s′ B[[b]]s = ff

(if b then S1 else S2, s)→ s′

(S, s)→ s′ (while b do S, s′)→ s′′ B[[b]]s = tt

(while b do S, s)→ s′′

B[[b]]s = ff

(while b do S, s)→ s

Structural Operational Semantics (SOS)

SOS describes how individual steps of computation take place. It is defined
by a transition system (, T,⇒) where:

• = {(S, s) | S ∈While, s ∈ State} ∪ State

• T = State

• ⇒⊆ {(S, s) | S ∈While, s ∈ State}×

9



The transition relation is defined with the following rules:

(x := a, s)⇒ s[x 7→ A[[a]]s]

(skip, s)⇒ s

(S1, s)⇒ (S′
1, s

′)

(S1;S2, s)⇒ (S′
1;S2, s′)

(S1, s)⇒ s′

(S1;S2, s)⇒ (S2, s′)

B[[b]]s = tt

(if b then S1 else S2, s)⇒ (S1, s)

B[[b]]s = ff

(if b then S1 else S2, s)⇒ (S2, s)

(while b do S, s)⇒ (if b then (S; while b do S) else skip, s)

Termination and Looping Programs

With operational semantics, we can formally define what it means for a
program to terminate or loop:

• In natural semantics, a program S terminates on state s if there exists
a derivation tree for (S, s) → s′ for some s′. Otherwise, it loops or is
stuck.

• In SOS, a program S terminates on state s if there exists a finite
derivation sequence starting with (S, s) and ending in a state. It loops
if there exists an infinite derivation sequence.

1.2.5 Denotational Semantics

Denotational semantics defines the meaning of programs directly as mathe-
matical functions that map input states to output states.

Semantic Functions

The denotational semantics of While uses the following semantic functions:

• A : Aexp→ (State→ N) for arithmetic expressions
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• B : Bexp→ (State→ T) for boolean expressions

• S : Stm→ (State→ State) for statements

The semantic function for arithmetic expressions is defined composition-
ally:

A[[n]]s = N [[n]]

A[[x]]s = s x

A[[a1 + a2]]s = A[[a1]]s+A[[a2]]s
A[[a1 ∗ a2]]s = A[[a1]]s ∗ A[[a2]]s
A[[a1 − a2]]s = A[[a1]]s−A[[a2]]s

Similarly, for boolean expressions:

B[[true]]s = tt

B[[false]]s = ff

B[[a1 = a2]]s =

{
tt if A[[a1]]s = A[[a2]]s
ff if A[[a1]]s ̸= A[[a2]]s

B[[a1 ≤ a2]]s =

{
tt if A[[a1]]s ≤ A[[a2]]s
ff if A[[a1]]s > A[[a2]]s

B[[¬b]]s =

{
tt if B[[b]]s = ff

ff if B[[b]]s = tt

B[[b1 ∧ b2]]s =

{
tt if B[[b1]]s = tt and B[[b2]]s = tt

ff if B[[b1]]s = ff or B[[b2]]s = ff

Fixed Point Semantics for Loops

For iteration constructs like while loops, denotational semantics uses fixed
point theory. For the while statement, we define:

S[[while b do S]] = fix(F )

Where F is the functional:

F (f)(s) =

{
s if B[[b]]s = ff

f(S[[S]]s) if B[[b]]s = tt

And fix(F ) is the least fixed point of F .
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1.2.6 Semantic Properties and Equivalence

Free Variables

The free variables of an expression are the variables that occur in it. For-
mally, for arithmetic expressions:

FV (n) = ∅
FV (x) = {x}

FV (a1 + a2) = FV (a1) ∪ FV (a2)

FV (a1 ∗ a2) = FV (a1) ∪ FV (a2)

FV (a1 − a2) = FV (a1) ∪ FV (a2)

A key property is that the value of an expression depends only on the
values of its free variables:

Lemma 1. Let s and s′ be two states satisfying that s x = s′ x for all
x ∈ FV (a). Then A[[a]]s = A[[a]]s′.

Substitutions

Substitution replaces occurrences of a variable with an expression. For arith-
metic expressions:

n[y 7→ a0] = n

x[y 7→ a0] =

{
a0 if x = y

x if x ̸= y

(a1 + a2)[y 7→ a0] = (a1[y 7→ a0]) + (a2[y 7→ a0])

(a1 ∗ a2)[y 7→ a0] = (a1[y 7→ a0]) ∗ (a2[y 7→ a0])

(a1 − a2)[y 7→ a0] = (a1[y 7→ a0])− (a2[y 7→ a0])

An important property relates substitution to state update:

Lemma 2. A[[a[y 7→ a0]]]s = A[[a]](s[y 7→ A[[a0]]s]) for all states s.

Semantic Equivalence

Two statements S1 and S2 are semantically equivalent if they have the same
input-output behavior. Formally:

• In natural semantics: S1 and S2 are equivalent if for all states s and
s′, (S1, s)→ s′ if and only if (S2, s)→ s′.
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• In SOS: S1 and S2 are equivalent if for all states s, they either both
terminate with the same final state or both loop.

Examples of equivalent statements:

• S; skip and S

• while b do S and if b then (S; while b do S) else skip

• S1; (S2;S3) and (S1;S2);S3

1.2.7 Extensions to the While Language

Several extensions to the While language can be considered to model addi-
tional programming features:

Abortion

Adding the abort statement allows modeling of program errors:

S ::= . . . | abort

Non-determinism

Non-deterministic choice can be modeled with the or operator:

S ::= . . . | S1 or S2

With operational semantics rules:

(S1, s)→ s′

(S1 or S2, s)→ s′

(S2, s)→ s′

(S1 or S2, s)→ s′

(S1 or S2, s)⇒ (S1, s)

(S1 or S2, s)⇒ (S2, s)
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Parallelism

Parallelism can be modeled with the par operator:

S ::= . . . | S1 par S2

With SOS rules:

(S1, s)⇒ (S′
1, s

′)

(S1 par S2, s)⇒ (S′
1 par S2, s′)

(S1, s)⇒ s′

(S1 par S2, s)⇒ (S2, s′)

(S2, s)⇒ (S′
2, s

′)

(S1 par S2, s)⇒ (S1 par S′
2, s

′)

(S2, s)⇒ s′

(S1 par S2, s)⇒ (S1, s′)

1.3 Abstract Interpretation

Abstract interpretation provides a framework for approximating program
semantics to make analysis tractable. It allows us to derive sound (though
potentially incomplete) information about program behavior.

1.3.1 Introduction to Abstract Interpretation

Concrete program semantics is often too complex to compute exactly. Ab-
stract interpretation approximates concrete semantics by mapping concrete
values and operations to abstract domains that capture properties of inter-
est.

The key insight is that we can work with abstract representations that
preserve the properties we care about while discarding irrelevant details.

1.3.2 Galois Connections

The formal foundation of abstract interpretation is the Galois connection,
which relates concrete and abstract domains.

Definition 1 (Galois Connection). A Galois connection between two par-
tially ordered sets (C,≤C) and (A,≤A) consists of two functions α : C → A
(abstraction) and γ : A→ C (concretization) such that:

∀c ∈ C, a ∈ A : α(c) ≤A a ⇐⇒ c ≤C γ(a)
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In this context:

• C is the concrete domain (e.g., sets of states)

• A is the abstract domain (e.g., interval constraints on variables)

• α abstracts concrete values

• γ gives concrete meaning to abstract values

1.3.3 Abstract Domains

Abstract domains represent properties of interest about program values.
Common abstract domains include:

Sign Domain

The sign domain tracks whether values are positive, negative, or zero:

Sign = {+,−, 0,⊤,⊥}

With ordering ⊥ ≤ {+,−, 0} ≤ ⊤, and abstraction function:

αSign(n) =


+ if n > 0

0 if n = 0

− if n < 0

Interval Domain

The interval domain represents ranges of possible values:

Interval = {[a, b] | a, b ∈ Z ∪ {−∞,+∞}, a ≤ b} ∪ {⊥}

With abstraction function:

αInterval(S) =

{
⊥ if S = ∅
[min(S),max(S)] otherwise

Parity Domain

The parity domain tracks whether values are even or odd:

Parity = {even, odd,⊤,⊥}
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With ordering ⊥ ≤ {even, odd} ≤ ⊤, and abstraction function:

αParity(n) =

{
even if n mod 2 = 0

odd if n mod 2 = 1

1.3.4 Abstract Semantics

Abstract semantics defines the meaning of program constructs in terms
of abstract domains. It approximates concrete semantics while preserving
soundness.

Abstract Operations

For the interval domain, abstract operations include:

[a, b]+̂[c, d] = [a+ c, b+ d]

[a, b]−̂[c, d] = [a− d, b− c]

[a, b]×̂[c, d] = [min(ac, ad, bc, bd),max(ac, ad, bc, bd)]

Abstract Transfer Functions

Abstract transfer functions model the effect of statements on abstract states:

Ŝ[[x := a]](ŝ) = ŝ[x 7→ Â[[a]](ŝ)]
Ŝ[[skip]](ŝ) = ŝ

Ŝ[[S1;S2]](ŝ) = Ŝ[[S2]](Ŝ[[S1]](ŝ))

Ŝ[[if b then S1 else S2]](ŝ) = Ŝ[[S1]](ŝ ⊓ B̂[[b]]) ⊔ Ŝ[[S2]](ŝ ⊓ B̂[[¬b]])

For loops, we use a fixpoint computation with widening:

Ŝ[[while b do S]](ŝ) = lfp∇ŝ (λX.(ŝ ⊓ B̂[[¬b]]) ⊔ (Ŝ[[S]](X ⊓ B̂[[b]])))

1.3.5 Widening and Narrowing

To ensure termination of fixpoint computations for abstract semantics, we
use widening and narrowing operators.

Definition 2 (Widening Operator). A widening operator ∇ : A × A → A
satisfies:

• ∀x, y ∈ A : x ⊔ y ≤ x∇y (over-approximation)
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• For any ascending chain x0 ≤ x1 ≤ x2 ≤ . . ., the sequence y0 =
x0, yi+1 = yi∇xi+1 eventually stabilizes (termination)

For intervals, a common widening operator is:

[a, b]∇[c, d] =


[a,+∞) if d > b

(−∞, b] if c < a

[a, b] otherwise

Definition 3 (Narrowing Operator). A narrowing operator ∆ : A×A→ A
helps refine results after widening:

• ∀x, y ∈ A : y ≤ x =⇒ y ≤ x∆y ≤ x (refinement)

• For any descending chain x0 ≥ x1 ≥ x2 ≥ . . ., the sequence y0 =
x0, yi+1 = yi∆xi+1 eventually stabilizes (termination)

1.3.6 Soundness and Completeness

A key property of abstract interpretation is soundness, which ensures that
the abstract semantics correctly approximates concrete behavior.

Definition 4 (Soundness). An abstract semantics Ŝ is sound with respect
to concrete semantics S if:

∀S ∈ Stm, s ∈ State, ŝ ∈ ˆState : s ∈ γ(ŝ) =⇒ S[[S]](s) ∈ γ(Ŝ[[S]](ŝ))
Abstract interpretation may sacrifice completeness (precision) for decid-

ability and efficiency. The abstract results may be sound but conservative,
reporting potential errors that cannot actually occur.

1.4 Dataflow Analysis

Dataflow analysis is a technique for computing information about the pos-
sible set of values at different program points. It’s widely used in compilers
for optimization and in static analyzers for detecting potential errors.

1.4.1 Control Flow Graphs

Dataflow analysis operates on control flow graphs (CFGs), which represent
the flow of control in a program.

Definition 5 (Control Flow Graph). A control flow graphG = (N,E, n0, nf )
consists of:

• A set of nodes N representing program points

• A set of edges E ⊆ N ×N representing possible control flows

• An entry node n0 ∈ N

• An exit node nf ∈ N
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1.4.2 Dataflow Equations

Dataflow analysis defines a set of equations that relate information at dif-
ferent program points. For each node n in the CFG:

IN[n] = ⊓p∈pred(n)OUT[p]

OUT[n] = fn(IN[n])

Where:

• IN[n] is the information at the entry to node n

• OUT[n] is the information at the exit from node n

• pred(n) is the set of predecessors of node n

• fn is the transfer function for node n

• ⊓ represents the meet operator (often set union or intersection)

1.4.3 Forward and Backward Analysis

Dataflow analyses can be categorized as forward or backward:

• Forward Analysis: Information flows in the direction of program
execution. Used for reaching definitions, available expressions, etc.

IN[n] = ⊓p∈pred(n)OUT[p]

OUT[n] = fn(IN[n])

• Backward Analysis: Information flows opposite to the direction of
program execution. Used for live variables, etc.

OUT[n] = ⊓s∈succ(n)IN[s]
IN[n] = fn(OUT[n])

1.4.4 May and Must Analysis

Dataflow analyses can also be categorized based on their certainty:

• May Analysis: Computes information that may be true along some
execution path. Uses union (∪) as the meet operator. Examples:
reaching definitions, available expressions.

• Must Analysis: Computes information that must be true along all
execution paths. Uses intersection (∩) as the meet operator. Exam-
ples: very busy expressions, live variables.
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1.4.5 Common Dataflow Analyses

Reaching Definitions

Determines which definitions (assignments) may reach a program point.

• Domain: 2D where D is the set of all definition sites

• Direction: Forward

• Meet operator: Union (∪)

• Transfer function: fn(x) = genn ∪ (x− killn)

– genn: Definitions generated at node n

– killn: Definitions killed at node n (by redefining variables)

Live Variables

Determines which variables may be used before their next definition.

• Domain: 2V where V is the set of all variables

• Direction: Backward

• Meet operator: Union (∪)

• Transfer function: fn(x) = usen ∪ (x− defn)

– usen: Variables used at node n

– defn: Variables defined at node n

Available Expressions

Determines which expressions have been computed and not invalidated.

• Domain: 2E where E is the set of all expressions

• Direction: Forward

• Meet operator: Intersection (∩)

• Transfer function: fn(x) = genn ∪ (x− killn)

– genn: Expressions computed at node n

– killn: Expressions invalidated at node n (by redefining variables)
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1.4.6 Solving Dataflow Equations

Dataflow equations can be solved using iterative methods:

1. Initialize all IN[] and OUT[] sets based on boundary conditions

2. Repeatedly apply the transfer functions until a fixed point is reached

The iterative algorithm is guaranteed to terminate if:

• The domain has finite height or we use widening

• Transfer functions are monotonic

1.4.7 Monotone Frameworks

Most dataflow analyses can be formulated within a general monotone frame-
work:

Definition 6 (Monotone Framework). A monotone framework consists of:

• A semi-lattice (L,⊓) with a top element ⊤

• A set of monotone transfer functions F : L→ L

• A control flow graph G

• Boundary conditions

The framework guarantees that the iterative solution method converges
to the meet-over-all-paths (MOP) solution for distributive transfer functions.

1.5 Verification Tools

Software verification tools apply the theoretical concepts of semantics, ab-
stract interpretation, and dataflow analysis to verify properties of real-world
programs.

1.5.1 Categories of Verification Tools

Static Analyzers

Static analyzers examine program code without execution to identify poten-
tial issues:

• Abstract Interpretation Tools: Tools like Astrée, Polyspace, and
InterProc analyze programs using abstract interpretation to verify ab-
sence of runtime errors.
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• Dataflow Analyzers: Compilers like GCC and LLVM include dataflow
analysis for optimization and some error detection.

• Type-based Analyzers: Tools that extend type systems to catch
more errors at compile time.

Model Checkers

Model checkers verify that a system meets specified properties by exploring
all possible states:

• Explicit-state Model Checkers: Tools like SPIN explore the con-
crete state space.

• Symbolic Model Checkers: Tools like NuSMV use symbolic repre-
sentations of states (e.g., BDDs) to handle larger state spaces.

• Bounded Model Checkers: Tools like CBMC unroll loops to a
bounded depth and convert the program to a satisfiability problem.

Theorem Provers

Theorem provers assist in developing formal proofs of program correctness:

• Interactive Theorem Provers: Tools like Coq, Isabelle, and PVS
require user guidance to develop proofs.

• Automatic Theorem Provers: Tools like Z3, CVC4, and Vampire
attempt to find proofs automatically.

• Program Verifiers: Tools like Frama-C, Why3, and Dafny combine
programming languages with specification and verification capabilities.

1.5.2 Specific Verification Tools

Clousot

Clousot is a static analyzer developed by Microsoft Research that uses ab-
stract interpretation to verify .NET programs:

• Focuses on verifying absence of null dereferences, array bounds viola-
tions, and arithmetic overflows

• Uses a combination of abstract domains, including numerical domains
and heap analysis

• Integrated with Visual Studio and the Code Contracts framework
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InterProc

InterProc is an abstract interpretation-based analyzer for a simple impera-
tive language:

• Supports various abstract domains: intervals, octagons, polyhedra,
etc.

• Provides a web interface for interactive analysis

• Developed by INRIA (French National Institute for Research in Com-
puter Science)

• Educational tool that demonstrates the principles of abstract interpre-
tation

Jandom

Jandom is a framework for static analysis based on abstract interpretation:

• Focuses on numerical properties of Java and bytecode programs

• Developed at the University of Pescara

• Implements various abstract domains and fixpoint algorithms

• Available as an API for integration with other tools

1.5.3 Practical Verification Example

Let’s consider a simple program analysis using InterProc:

var x, y: int;

begin

x := 0;

y := 0;

while x < 10 do

x := x + 1;

y := y + x;

done

end

InterProc with the interval domain would analyze this program as fol-
lows:

1. Initialize: x ∈ [−∞,+∞], y ∈ [−∞,+∞]

2. After x := 0: x ∈ [0, 0], y ∈ [−∞,+∞]
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3. After y := 0: x ∈ [0, 0], y ∈ [0, 0]

4. Loop entry first iteration: x ∈ [0, 0], y ∈ [0, 0] with condition x < 10

5. After x := x+ 1: x ∈ [1, 1], y ∈ [0, 0]

6. After y := y + x: x ∈ [1, 1], y ∈ [1, 1]

7. Loop entry second iteration: x ∈ [1, 1], y ∈ [1, 1] with condition x < 10

8. After several iterations and applying widening: x ∈ [0, 10], y ∈ [0, 55]

9. After the loop (with x ≥ 10): x ∈ [10, 10], y ∈ [55, 55]

This analysis proves that at the end of the program, x = 10 and y = 55
(which is the sum of integers from 1 to 10).

1.5.4 Challenges and Limitations

Verification tools face several challenges:

• Scalability: Analysis of large, complex programs can be computa-
tionally expensive.

• Precision vs. Efficiency: More precise analyses generally require
more computational resources.

• False Positives: Static analyzers may report potential errors that
cannot actually occur.

• Undecidability: Some properties are fundamentally undecidable,
limiting what can be automatically verified.

• Complex Language Features: Features like dynamic dispatch, re-
flection, and concurrency complicate analysis.

1.6 Conclusion

Software verification represents a critical intersection of theoretical computer
science and practical software engineering. By formalizing program seman-
tics, applying abstract interpretation, and implementing dataflow analyses,
we can develop tools that help ensure software reliability.

The field continues to evolve, with ongoing research addressing chal-
lenges in scalability, precision, and applicability to modern programming
languages and paradigms. As software systems grow more complex and are
deployed in increasingly critical contexts, the importance of rigorous verifi-
cation approaches will only increase.
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Chapter 2

Denotational Semantics

2.1 Introduction to Denotational Semantics

Denotational semantics is a mathematical approach to modeling the mean-
ing of programs through mapping program phrases to mathematical objects
that represent their behavior. Unlike operational semantics, which describes
how programs execute, denotational semantics directly relates program con-
structs to their mathematical meaning, focusing on the input-output rela-
tionship rather than execution steps.

2.1.1 Key Principles of Denotational Semantics

Denotational semantics is characterized by several core principles:

• Compositionality: The meaning of a compound expression is deter-
mined by the meanings of its parts and the rules for combining them.

• Mathematical functions: Programs and their components are in-
terpreted as mathematical functions.

• Order theory and fixed points: Programs with iteration or recur-
sion are defined using fixed point theory.

• Abstraction: Details of actual execution are abstracted away, focus-
ing on input-output behavior.

2.2 Direct Style Denotational Semantics for While

We define a denotational semantics for the While language as a mapping
from programs to partial functions on states. This is often called ”direct
style” because it directly maps statements to their state transformation
functions.
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2.2.1 Basic Semantic Function

The primary semantic function is:

Sds : Stm→ (State ⇀ State) (2.1)

Here Sds[S] is a partial function on states, meaning it may be undefined
for some states (representing non-termination). The notation ⇀ indicates
that this is a partial function.

2.2.2 Semantic Equations

The semantic function is defined inductively by the following equations:

Sds[x := a]s = s[x 7→ A[a]s] (2.2)

Sds[skip] = id (2.3)

Sds[S1;S2] = Sds[S2] ◦ Sds[S1] (2.4)

Sds[if b then S1 else S2] = cond(B[b],Sds[S1],Sds[S2]) (2.5)

Sds[while b do S] = FIX F (2.6)

where F is the functional defined by:

Fg = cond(B[b], g ◦ Sds[S], id) (2.7)

2.2.3 Helper Notations

In these equations, we use the following notation:

id s = s (2.8)

(f ◦ g)s =

{
f(g s) if g s ̸= undef and f(g s) ̸= undef

undef otherwise
(2.9)

cond(p, g1, g2)s =


g1 s if p s = tt and g1 s ̸= undef

g2 s if p s = ff and g2 s ̸= undef

undef otherwise

(2.10)

2.3 Fixed Points and While Loops

The meaning of while loops is given using fixed points. When we define:

Sds[while b do S] = FIX F (2.11)

The meaning of FIX F requires explanation.
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2.3.1 The Fixed Point Problem

When analyzing a while loop:

while b do S (2.12)

We can rewrite it as:

if b then (S; while b do S) else skip (2.13)

This gives us a recursive equation:

Sds[while b do S] = Sds[if b then (S; while b do S) else skip] (2.14)

This leads to:

Sds[while b do S] = cond(B[b],Sds[S; while b do S],Sds[skip]) (2.15)

= cond(B[b],Sds[while b do S] ◦ Sds[S], id) (2.16)

= F (Sds[while b do S]) (2.17)

where Fg = cond(B[b], g ◦ Sds[S], id).
This shows that Sds[while b do S] is a fixed point of F , meaning F (Sds[while b do S]) =

Sds[while b do S].

2.3.2 Requirements for FIX

The desired fixed point FIXF should be some partial function g0 : State ⇀
State satisfying:

• g0 is a fixed point of F : F g0 = g0

• If g is another fixed point of F , then g is at least as defined as g0: if
F g = g and g0 s = s′, then g s = s′ for all choices of s and s′

In other words, FIXF should be the least fixed point of F .

2.4 Order Theory and Fixed Points

To formalize the concept of least fixed points, we need mathematical ma-
chinery from order theory.

2.4.1 Partially Ordered Sets

A set D with an ordering ⊑ is a partially ordered set (poset) if ⊑ is:

• Reflexive: d ⊑ d

• Transitive: d1 ⊑ d2 and d2 ⊑ d3 imply d1 ⊑ d3

• Anti-symmetric: d1 ⊑ d2 and d2 ⊑ d1 imply d1 = d2

An element d is a least element of (D,⊑) if d ⊑ d′ for all d′ ∈ D. If it
exists, the least element is unique and denoted ⊥ (bottom).
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2.4.2 Ordering on Partial Functions

For partial functions, we define the ordering ⊑ as:

g1 ⊑ g2 if and only if ∀s, s′ : if g1 s = s′ then g2 s = s′ (2.18)

This means g1 is less defined than g2 (or equally defined). The partial
function defined by ⊥ s = undef for all s is the least element in this ordering.

Lemma 3. (State ⇀ State,⊑) is a partially ordered set with least element
⊥.

2.4.3 Chains and Upper Bounds

A subset Y of D is called a chain if for any two elements d1 and d2 in Y ,
either d1 ⊑ d2 or d2 ⊑ d1.

An element d is an upper bound of Y if d′ ⊑ d for all d′ ∈ Y . It is a
least upper bound of Y if it is an upper bound, and for any other upper
bound d′ of Y , we have d ⊑ d′. The least upper bound of Y , if it exists, is
denoted

⊔
Y .

2.4.4 Chain Complete Partial Orders

A partially ordered set (D,⊑) is a chain complete partial order (ccpo)
if every chain in D has a least upper bound.

Lemma 4. (State ⇀ State,⊑) is a chain complete partially ordered set.
For a chain Y , the least upper bound

⊔
Y is given by:

(
⊔

Y )s =

{
g s if g s ̸= undef for some g ∈ Y

undef otherwise
(2.19)

2.5 Continuous Functions and Fixed Point Theo-
rem

2.5.1 Monotone and Continuous Functions

A function f : D → D′ between ccpos is monotone if whenever d1 ⊑ d2,
we have f d1 ⊑′ f d2.

A function f : D → D′ is continuous if:

• f is monotone

•
⊔′{f d | d ∈ Y } = f(

⊔
Y ) for all non-empty chains Y of D
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2.5.2 The Fixed Point Theorem

Theorem 1 (Fixed Point Theorem). Let f : D → D be a continuous
function on a ccpo (D,⊑) with least element ⊥. Then:

FIX f =
⊔
{fn⊥ | n ≥ 0} (2.20)

defines an element of D, and this element is the least fixed point of f .

Here, we use the notation f0 = id and fn+1 = f ◦ fn for n ≥ 0.

2.5.3 Auxiliary Lemmas for Continuity

For the semantics of While, we need to ensure that the functionals used are
continuous. Key lemmas include:

Lemma 5. Let g0 : State ⇀ State, p : State → T and define F g =
cond(p, g, g0). Then F is continuous.

Lemma 6. Let g0 : State ⇀ State and define F g = g ◦ g0. Then F is
continuous.

Lemma 7. If f : D → D′ and f ′ : D′ → D′′ are continuous functions, then
f ′ ◦ f is a continuous function.

2.6 Well-definedness of Denotational Semantics

These theoretical tools allow us to formally establish the well-definedness of
our denotational semantics.

The semantic equations for Sds define a total function in Stm→ (State ⇀
State).

The proof relies on showing that all functionals used in the semantic
equations are continuous, allowing us to apply the Fixed Point Theorem to
define the semantics of while loops.

2.7 Equivalence of Semantic Approaches

One fundamental result is the equivalence between operational and denota-
tional semantics for the While language.

Theorem 2. For every statement S of While, we have Ssos[S] = Sds[S],
where:

Ssos[S]s =

{
s′ if (S, s)⇒∗ s′

undefined otherwise
(2.21)

The proof involves showing both directions of the inclusion:

Lemma 8. For every statement S of While, we have Ssos[S] ⊑ Sds[S].
Lemma 9. For every statement S of While, we have Sds[S] ⊑ Ssos[S].
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2.8 Program Equivalence in Denotational Seman-
tics

Denotational semantics provides a powerful framework for establishing pro-
gram equivalence. Two programs P and Q are equivalent, denoted P ∼= Q,
when Sds[P ] = Sds[Q].

Examples of equivalent programs include:

• S; skip ∼= S

• S1; (S2;S3) ∼= (S1;S2);S3

• while b do S ∼= if b then (S; while b do S) else skip

More complex equivalences, like repeat S until b ∼= S; while ¬b do S, re-
quire careful reasoning using fixed point theory.

2.9 Extensions and Applications

2.9.1 Denotational Semantics of Additional Constructs

The approach can be extended to additional language constructs:

Repeat-Until Loops

repeat S until b ∼= S; if b then skip else repeat S until b (2.22)

This leads to the equation:

Sds[repeat S until b] = cond(B[b], id,Sds[repeat S until b]) ◦ Sds[S] (2.23)

For Loops

for x := a1 to a2 do S ∼= x := a1; while x ≤ a2 do (S;x := x+ 1) (2.24)

2.9.2 Example: Factorial Program

Consider the factorial program:

y := 1;while ¬(x = 1) do (y := y ∗ x;x := x− 1) (2.25)

Its denotational semantics is:

Sds[y := 1;while ¬(x = 1) do (y := y ∗ x;x := x− 1)]s = (FIX F )(s[y 7→ 1])
(2.26)
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where:

(F g) s =

{
g(s[y 7→ (s y ∗ s x)][x 7→ (s x)− 1]) if s x ̸= 1

s if s x = 1
(2.27)

Using the Fixed Point Theorem, we can show that:

(FIX F )s =

{
undef if s x < 1

s[y 7→ (s y) ∗ n ∗ . . . ∗ 2 ∗ 1][x 7→ 1] if s x = n and n ≥ 1

(2.28)

2.10 Conclusion and Further Readings

Denotational semantics offers a powerful mathematical framework for un-
derstanding program meaning and proving program properties. Its focus on
mathematical functions and fixed point theory provides a rigorous founda-
tion for program analysis and verification.

The topics covered in this chapter form the basis for more advanced top-
ics such as abstract interpretation, dataflow analysis, and the development
of software verification tools, which we will explore in subsequent chapters.
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Chapter 3

Static Program Analysis

3.1 Introduction to Static Program Analysis

Static program analysis comprises automatic techniques designed to infer
approximate information about run-time program behaviors at compile-time
without executing the program. Unlike dynamic analysis, which examines
programs during execution, static analysis works by examining the source
code or other artifacts derived from it.

3.1.1 Definition and Applications

Static program analysis can be formally defined as a set of techniques that
compute conservative approximations of possible program behaviors. These
techniques reason about the program state at various program points with-
out executing the program itself.

The applications of static program analysis include:

• Bug detection: Identifying potential runtime errors such as null
pointer dereferences, buffer overflows, and memory leaks.

• Program verification: Proving that a program satisfies certain prop-
erties or specifications.

• Code optimization: Identifying redundancies, dead code, and opti-
mization opportunities.

• Program parallelization: Determining which parts of a program
can be safely executed in parallel.

• Type inference: Deducing types of expressions in programming lan-
guages with implicit typing.
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3.2 Program Representation

To perform static analysis, programs are typically represented in forms
amenable to systematic examination, such as program points, control flow
graphs, and abstract syntax trees.

3.2.1 Program Points

Program points are locations in a program where the program state may
change. They provide reference points for analysis to track information flow
through the program.

Example 1. Consider the following program that computes the double
factorial of a non-negative number n:

{n = k n 0}

input n;

m := 2;

while n > 1 do

m := m * n;

n := n - 1;

output m;

{m = 2(k!)}

The same program with program points identified:

(1) input n;

(2) m := 2;

while (3) n > 1 do

(4) m := m * n;

(5) n := n - 1;

(6) output m;

These numbered locations allow us to reason about program states at
specific points in the execution.

3.2.2 Control Flow Graph

A control flow graph (CFG) is a directed graph representation of a program
where:

• Nodes represent program points or basic blocks (sequences of instruc-
tions without branching).

• Edges represent possible control flow transitions between program
points.
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Formally, a control flow graph G is a tuple (N,E, n0) where:

• N is a set of nodes representing program points.

• E ⊆ N ×N is a set of directed edges representing control flow.

• n0 ∈ N is the entry node.

Example 2. For the program above, the control flow graph would be:

input n (1)

↓
m := 2 (2)

↓
n > 1 (3) → No → output m (6)

↓ Yes

m := m * n (4)

↓
n := n - 1 (5)

↑

3.3 Static Analysis Principles

3.3.1 Parity Analysis Example

To illustrate the concepts of static analysis, let us consider a simple parity
analysis of the factorial program. The goal is to determine whether variables
have even or odd values at different program points.

Example 3. For the factorial program, our parity domain has the values:

• Even: the value is even

• Odd: the value is odd

• DontKnow: the value can be either even or odd

The analysis would propagate these values through the control flow
graph:

(1) n: DontKnow, m: DontKnow

(2) n: DontKnow, m: DontKnow

(3) n: DontKnow, m: Even (since m := 2)

(4) n: DontKnow, m: Even

(5) n: DontKnow, m: Even

(6) n: DontKnow, m: Even
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From this analysis, we can infer that at program point (6), the value
of variable m will be even for any input value of n. This is because m is
initialized to 2 (an even number) and multiplying an even number by any
integer always yields an even number.

Note that for the exact factorial program (without the multiplication by
2), the analysis would provide no useful information on the parity of m at
point (6), since factorial values can be either even or odd depending on the
input.

3.3.2 Precision and Correctness

A fundamental aspect of static analysis is the trade-off between precision
and decidability.

Undecidability and Approximation

Due to Rice’s Theorem, most interesting dynamic properties of programs
are undecidable. This means that we cannot automatically infer them with
complete precision. As a result, static analyses must make approximations.

Theorem 3 (Rice’s Theorem). Any non-trivial semantic property of pro-
grams is undecidable.

Soundness

Despite approximations, we need to ensure the correctness (soundness) of
static analysis:

• If the analysis outputs a positive result (YES), then the property is
certainly verified.

• If the analysis does not output a positive result, then it may happen
that the property is not verified (DontKnow).

This leads to the concept of sound versus unsound analyses:

• Sound analysis: Never produces false negatives (may have false pos-
itives).

• Unsound analysis: May produce false negatives, which are particu-
larly dangerous for verification.

Example 4. Consider the halting problem, which is undecidable. A sound
termination analysis would only claim a program terminates when it can
prove it. In contrast, an unsound analysis might incorrectly classify some
non-terminating programs as terminating.
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Example 5. Imagine a static analysis that attempts to detect divisions by
zero by searching for string patterns ”/0” in the code. This would generate:

• True alarm: x = 100/0;

• False alarm (false positive): print(”25/09/2016”);

• False alarm (false positive): y = 100/02;

• False negative (missed error): z = 0; print(5/z);

The presence of false negatives makes this analysis unsound and unsuit-
able for verification purposes.

3.4 Static Analysis and Compiler Optimization

One important application of static analysis is in optimizing compilers,
which transform program code to improve efficiency without changing the
program’s input/output behavior.

3.4.1 Optimization Techniques

Common optimization techniques enabled by static analysis include:

• Common subexpression elimination: If an expression is computed
multiple times, compute it once and reuse the result.

• Dead code elimination: Remove code that has no effect on the
program’s output.

• Constant folding: Evaluate constant expressions at compile time.

• Loop invariant code motion: Move operations outside of loops
when their results don’t change within the loop.

3.4.2 Limitations of Optimization

A ”fully optimizing compiler” that produces the smallest equivalent pro-
gram is theoretically impossible due to undecidability constraints. If such a
compiler existed, it could solve the halting problem—an undecidable prob-
lem—by determining if a program has the same behavior as an infinite loop.

3.5 Designing Static Analyses

To design a sound static analysis, we need:

1. A well-defined reference program semantics
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2. A precise specification of what the static analysis computes and how

3. A proof of correctness with respect to the semantics

4. An efficient implementation

3.5.1 Static Analysis Techniques

Several techniques provide frameworks for static analysis:

• Abstract Interpretation: A theoretical framework for approximat-
ing program semantics.

• Dataflow Analysis: A technique for gathering information about the
possible values at different points in a program.

• Model Checking: Verification of whether a model meets a given
specification.

• Logical Deductive Systems: Program logics and SMT/SAT solvers.

• Type Systems: Formal systems that assign types to expressions to
prevent errors.

3.6 Mathematical Foundations: Lattices and Fix-
points

Static analysis techniques, particularly abstract interpretation and dataflow
analysis, rely heavily on concepts from order theory such as lattices and
fixpoints.

3.6.1 Lattices

Definition 7 (Partially Ordered Set). A partially ordered set (poset) is a
pair (L,≤) where L is a set and ≤ is a relation on L that is:

• Reflexive: ∀x ∈ L, x ≤ x

• Antisymmetric: ∀x, y ∈ L, x ≤ y ∧ y ≤ x⇒ x = y

• Transitive: ∀x, y, z ∈ L, x ≤ y ∧ y ≤ z ⇒ x ≤ z

Definition 8 (Least Upper Bound and Greatest Lower Bound). For a subset
Y ⊆ L of a poset (L,≤):

• An element u ∈ L is an upper bound of Y if ∀y ∈ Y, y ≤ u.

• The least upper bound (lub) of Y , denoted
⊔
Y , is an upper bound u

of Y such that ∀u′ ∈ L where u′ is an upper bound of Y , u ≤ u′.
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• Similarly, a greatest lower bound (glb) of Y , denoted
d
Y , is defined.

Definition 9 (Lattice). A lattice is a poset (L,≤) such that for any pair
of elements x, y ∈ L, both

⊔
{x, y} (typically written as x ⊔ y) and

d
{x, y}

(typically written as x ⊓ y) exist.

Example 6. The powerset of a set with the subset relation, (P(S),⊆),
forms a lattice where:

• The lub is the union: A ⊔B = A ∪B

• The glb is the intersection: A ⊓B = A ∩B

3.6.2 Complete Lattices and CPOs

Definition 10 (Complete Lattice). A lattice (L,≤) is complete if every
subset of L (including the empty set) has both a lub and a glb.

Definition 11 (Chain). A subset Y ⊆ L of a poset (L,≤) is a chain if
∀y1, y2 ∈ Y, y1 ≤ y2 ∨ y2 ≤ y1 (i.e., Y is totally ordered).

Definition 12 (CPO). A poset (L,≤) is a chain-complete partial order
(CPO) if every chain in L has a lub.

Definition 13 (Ascending Chain). A sequence (yn)n∈N of elements in L is
an ascending chain if n ≤ m⇒ yn ≤ ym.

Definition 14 (Ascending Chain Condition). A poset (L,≤) satisfies the
Ascending Chain Condition (ACC) if every ascending chain in L eventually
stabilizes (i.e., becomes constant).

3.6.3 Fixpoints

Definition 15 (Fixpoint). For a function f : L → L on a poset (L,≤), a
fixpoint of f is an element x ∈ L such that f(x) = x. The set of all fixpoints
of f is denoted Fix(f) = {x ∈ L | f(x) = x}.

Definition 16 (Least Fixpoint). The least fixpoint of f , denoted lfp(f), if
it exists, is the least element in Fix(f) with respect to ≤.

Definition 17 (Pre-Fixpoint and Post-Fixpoint). For a function f : L→ L:

• A pre-fixpoint of f is an element x ∈ L such that f(x) ≤ x.

• A post-fixpoint of f is an element x ∈ L such that x ≤ f(x).

Theorem 4 (Fixpoint Theorem for Complete Lattices). Let f : L→ L be
a monotonic function on a complete lattice (L,≤). Then:

• lfp(f) =
d
{x ∈ L | f(x) ≤ x} (the glb of all pre-fixpoints)
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• gfp(f) =
⊔
{x ∈ L | x ≤ f(x)} (the lub of all post-fixpoints)

Theorem 5 (Kleene Fixpoint Theorem). Let f : L → L be a continuous
function on a CPO (L,≤) with a least element ⊥. Then the least fixpoint
of f exists and is given by:

lfp(f) =
⊔
{fn(⊥) | n ≥ 0}

where f0(x) = x and fn+1(x) = f(fn(x)) for n ≥ 0.

3.7 Abstract Interpretation

Abstract interpretation is a theoretical framework for approximating pro-
gram semantics. It was formalized by Patrick and Radhia Cousot in 1977
and has since become a fundamental approach in static program analysis.

3.7.1 Basic Concepts

Abstract interpretation involves:

• A concrete domain representing the actual program behaviors

• An abstract domain representing the properties of interest

• Mappings between the concrete and abstract domains

• Abstract operations that approximate concrete operations

3.7.2 Abstraction and Concretization

The relationship between concrete and abstract domains is formalized through:

Definition 18 (Abstraction and Concretization Functions). Given a con-
crete domain C and an abstract domain A:

• The abstraction function α : C → A maps concrete values to their
abstract representations.

• The concretization function γ : A → C maps abstract values to the
set of concrete values they represent.

Definition 19 (Galois Connection). A Galois connection between posets
(C,≤C) and (A,≤A) is a pair of functions α : C → A and γ : A → C such
that:

∀c ∈ C, a ∈ A : α(c) ≤A a ⇐⇒ c ≤C γ(a)

Definition 20 (Galois Insertion). A Galois connection (α,C,A, γ) is a Ga-
lois insertion if α is surjective (or equivalently, γ is injective), which means
that:

∀a ∈ A : α(γ(a)) = a
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3.7.3 Sign Domain Example

The sign domain is a simple abstract domain that tracks whether values are
positive, negative, or zero.

Example 7. Consider the sign domain for integer values:

• Abstract domain: Sign = {+,−, 0,⊤,⊥}

• Ordering: ⊥ ≤ {+,−, 0} ≤ ⊤

• Abstraction function:

αSign(n) =


+ if n > 0

0 if n = 0

− if n < 0

• Concretization function:

γSign(⊥) = ∅, γSign(+) = {n ∈ Z | n > 0}, γSign(0) = {0}, γSign(−) = {n ∈ Z | n < 0}, γSign(⊤) = Z

Multiplication in the sign domain is defined as:

×a − 0 + ⊤ ⊥
− + 0 − ⊤ ⊥
0 0 0 0 0 ⊥
+ − 0 + ⊤ ⊥
⊤ ⊤ 0 ⊤ ⊤ ⊥
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

This example illustrates how concrete operations (integer multiplication)
can be approximated by abstract operations (sign multiplication).

3.7.4 Correctness of Abstract Operations

Definition 21 (Correct Abstract Operation). Let op : Cn → C be a con-
crete operation and opa : An → A be a corresponding abstract operation.
The abstract operation opa is correct with respect to op if:

∀a1, . . . , an ∈ A : op(γ(a1), . . . , γ(an)) ⊆ γ(opa(a1, . . . , an))

Definition 22 (Best Correct Approximation). For any concrete operation
op : Cn → C, the best correct approximation opA of op on abstract domain
A is:

opA(a1, . . . , an) = α(op(γ(a1), . . . , γ(an)))
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3.8 Abstract Denotational Semantics

We can apply abstract interpretation to denotational semantics to create an
abstract denotational semantics for program analysis.

3.8.1 Collecting Semantics

The collecting semantics lifts the standard denotational semantics to operate
on sets of states, representing state properties.

Definition 23 (Collecting Denotational Semantics). For a language with
arithmetic expressions (Aexp), boolean expressions (Bexp), and statements
(While), the collecting semantics are:

Ac : Aexp→ P(State)→ P(Z)
Ac[[e]]T = {A[[e]]s | s ∈ T}

Bc : Bexp→ P(State)→ P(State)
Bc[[b]]T = {s ∈ T | B[[b]]s = tt}

D : While→ P(State)→ P(State)

For statements, D is defined as:

D[[x := e]]T = {s[x 7→ A[[e]]s] | s ∈ T}
D[[skip]]T = T

D[[S1;S2]]T = (D[[S2]] ◦D[[S1]])T

D[[if b then S1 else S2]]T = (D[[S1]] ◦Bc[[b]])T ∪ (D[[S2]] ◦Bc[[¬b]])T

For while loops, we use a fixpoint:

D[[while b do S]]T = Bc[[¬b]](lfp(λT ′.T ∪ (D[[S]] ◦Bc[[b]])T
′))

3.8.2 Abstract Domains

To perform abstract interpretation, we need abstract domains that represent
properties of concrete values and states.

Definition 24 (Abstract Domains for Denotational Semantics). Given a
Galois connection (αA,P(Z), A, γA) for values and (αS ,P(State), S, γS) for
states, we define abstract semantics:

A# : Aexp→ S → A

B# : Bexp→ S → S

D# : While→ S → S
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3.8.3 Correctness of Abstract Semantics

Theorem 6 (Soundness of Abstract Semantics). The abstract semantics is
sound if for all programs S ∈While and all abstract states s# ∈ S:

D[[S]](γS(s
#)) ⊆ γS(D

#[[S]]s#)

3.8.4 Sign Domain Example

Example 8. For the sign domain, abstract arithmetic expressions are de-
fined as:

A#[[n]]s# = α({n})
A#[[x]]s# = s#(x)

A#[[e1 op e2]]s
# = A#[[e1]]s

# opSignA
#[[e2]]s

#

For boolean expressions, the abstract semantics handles operations like
equality, inequality, and comparison by determining when abstract values
definitely satisfy or definitely don’t satisfy the condition.

For statements, the abstract semantics follows the structure of the con-
crete collecting semantics, but operates on abstract states.

3.9 Interval Analysis

Interval analysis is a classic abstract interpretation technique that approxi-
mates numeric values using intervals.

3.9.1 Interval Domain

Definition 25 (Interval Domain). The interval domain Int consists of:

• Elements of the form [a, b] where a, b ∈ Z ∪ {−∞,+∞} and a ≤ b

• A special element ⊥ representing the empty set

• Ordering: [a, b] ≤ [c, d] iff c ≤ a and b ≤ d

• Abstraction function: α(S) = [min(S),max(S)] if S ̸= ∅, and α(∅) =
⊥

• Concretization function: γ([a, b]) = {n ∈ Z | a ≤ n ≤ b} and γ(⊥) = ∅
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3.9.2 Widening for Interval Analysis

A key challenge in interval analysis is handling loops, which can lead to
unbounded growth of intervals. Widening operators address this problem.

Definition 26 (Widening Operator). A widening operator ∇ : L× L→ L
on a complete lattice (L,≤L) satisfies:

• ∀x, y ∈ L : x ⊔ y ≤L x∇y (over-approximation)

• For any ascending chain (xn)n≥0, the sequence y0 = x0, yi+1 = yi∇xi+1

eventually stabilizes (termination)

A standard widening operator for intervals is:

[a, b]∇[c, d] =


[a,+∞) if d > b

(−∞, b] if c < a

[a, b] otherwise

Example 9. Consider the program:

int x = 1;

while (x <= 100) do

x := x + 1;

Without widening, interval analysis would require 101 iterations to reach
the fixpoint [1, 101]. With widening, we might compute:

X0 = ⊥
X1 = X0∇Fa(X0) = ⊥∇[1, 1] = [1, 1]

X2 = X1∇Fa(X1) = [1, 1]∇[1, 2] = [1,+∞)

After applying the loop condition, we conclude x ∈ [101,+∞) after the
loop, correctly indicating that x > 100.

3.9.3 Practical Applications of Abstract Interpretation

Abstract interpretation has been successfully applied in various tools:

• Astrée: An abstract interpretation-based static analyzer that proved
the absence of runtime errors in the Airbus A380 fly-by-wire system.

• Frama-C: A platform for analyzing C programs using abstract inter-
pretation.

• Clang Static Analyzer: Uses abstract interpretation techniques to
find bugs in C, C++, and Objective-C programs.

• IKOS: An open-source framework for static analysis based on abstract
interpretation.
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3.10 Conclusion

Static program analysis provides powerful techniques to reason about pro-
gram behaviors without execution. Through abstract interpretation and
related approaches, we can develop sound analyses that identify potential
issues, verify properties, and guide optimizations. While the fundamental
limitations of undecidability mean that these analyses must make approx-
imations, carefully designed abstract domains and operations allow us to
extract valuable information about programs at compile time.

The fields of abstract interpretation and static analysis continue to evolve,
with ongoing research addressing challenges in scalability, precision, and ap-
plicability to modern programming languages and paradigms.
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Chapter 4

Abstract Interpretation with
Control Flow Graphs

4.1 Introduction

Abstract interpretation is a theoretical framework for constructing sound
approximations of program semantics. It provides a formal basis for static
analysis, allowing us to derive information about program behavior without
executing the program itself. This chapter focuses on abstract interpre-
tation techniques applied to control flow graphs, specifically for numerical
programs.

The key insight of abstract interpretation is that we can work with ab-
stract representations of program states that preserve the properties we care
about while discarding irrelevant details. This allows us to make analysis
tractable, even when the concrete semantics is undecidable or computation-
ally infeasible to analyze fully.

4.2 Generalities and Notations

4.2.1 Syntax

We begin by defining a simple toy language that we’ll use throughout this
chapter:

• Fixed, finite set of variables V

• One datatype: scalars in I, with I ∈ {Z,Q,R} (and later, floating-point
numbers F)

• No procedures
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Expression Syntax

Arithmetic expressions in our language are defined by the following gram-
mar:

exp ::= V variable V ∈ V (4.1)

| − exp negation (4.2)

|exp⊙ exp binary operation: ⊙ ∈ {+,−,×, /} (4.3)

|[c, c′] constant range, c, c′ ∈ I ∪ {±∞} (4.4)

Note that c is a shorthand for [c, c].

Programs as Structured Syntax

Programs can be represented as syntax trees:

prog ::= V := exp assignment (4.5)

|if exp ▷◁ 0 then prog else prog fi test (4.6)

|while exp ▷◁ 0 do prog done loop (4.7)

|prog; prog sequence (4.8)

|ϵ no-op (4.9)

Where comparison operators: ▷◁∈ {=, <,>,≤,≥, ̸=}.

Programs as Control Flow Graphs

Alternatively, programs can be represented as control flow graphs. The
commands in this representation are:

com ::= V := exp assignment into V ∈ V (4.10)

|exp ▷◁ 0 test, ▷◁∈ {=, <,>,≤,≥, ̸=} (4.11)

Programs as control flow graphs are formally defined as:

P def
= (L, e, x,A) (4.12)

Where:

• L are program points (labels)

• e is the entry point: e ∈ L

• x is the exit point: x ∈ L

• A are arcs: A ⊆ L× com× L
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Example

Consider the following program:

X:=[0,10];

Y:=100;

while X>=0 do

X:=X-1;

Y:=Y+10

done

This program can be represented as a control flow graph:

1

2

3 4
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X := [0, 10]

Y := 100

X ≥ 0

X := X − 1

Y := Y + 10

X < 0

Figure 4.1: Control flow graph example

4.3 Concrete Semantics

4.3.1 Forward Concrete Semantics

The semantics of expressions EJeK : (V → I) → P(I) gives a set of values
when evaluating an expression e in an environment ρ:
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EJ[c, c′]Kρ def
= {x ∈ I | c ≤ x ≤ c′} (4.13)

EJV Kρ def
= {ρ(V )} (4.14)

EJ−eKρ def
= {−v | v ∈ EJeKρ} (4.15)

EJe1 + e2Kρ
def
= {v1 + v2 | v1 ∈ EJe1Kρ, v2 ∈ EJe2Kρ} (4.16)

EJe1 − e2Kρ
def
= {v1 − v2 | v1 ∈ EJe1Kρ, v2 ∈ EJe2Kρ} (4.17)

EJe1 × e2Kρ
def
= {v1 × v2 | v1 ∈ EJe1Kρ, v2 ∈ EJe2Kρ} (4.18)

EJe1/e2Kρ
def
= {v1/v2 | v1 ∈ EJe1Kρ, v2 ∈ EJe2Kρ, v2 ̸= 0} (4.19)

Note that EJeiK = ∅ ⇒ EJe1 ⊙ e2K = ∅, where the empty set models
run-time errors or non-termination.

The semantics of commands CJcK : P(V → I) → P(V → I) defines a
transfer function for commands:

CJV := eKX def
= {ρ[V 7→ v] | ρ ∈ X, v ∈ EJeKρ} (4.20)

CJe ▷◁ 0KX def
= {ρ | ρ ∈ X,∃v ∈ EJeKρ, v ▷◁ 0} (4.21)

This is a complete join morphism: CJcKX =
⋃

ρ∈X CJcK{ρ}.
Note that:

CJx := 1/0KX = ∅ (4.22)

CJ1/0 < 1KX = ∅ (4.23)

where ∅ models run-time error or non-termination. Also,

CJ[2, 2] > 0KX = X (4.24)

The semantics of programs PJ(L, e, x,A)K : L → P(V → I) computes
the most precise invariant at each program point ℓ ∈ L.

This is the smallest solution of a recursive equation system (Xℓ)ℓ∈L:

Xe = (given initial state) (4.25)

Xℓ̸=e =
⋃

(ℓ′,c,ℓ)∈A

CJcKXℓ′ (transfer function) (4.26)

By Tarski’s Theorem, this smallest solution exists and is unique. The

domain D def
= (P(V → I),⊆,∪,∩, ∅, (V → I)) is a complete lattice, and each

Mℓ : Xℓ 7→
⋃

(ℓ′,c,ℓ)∈A CJcKXℓ′ is monotonic in D.
Therefore, the solution is the least fixpoint of (Mℓ)ℓ∈L.
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4.3.2 Resolution

Resolution by increasing iterations:X0
e

def
= Xe

X0
ℓ̸=e

def
= ∅

(4.27)

Xn+1
e

def
= Xe

Xn+1
ℓ̸=e

def
=
⋃

(ℓ′,c,ℓ)∈A CJcKXn
ℓ′

(4.28)

This converges in ω iterations to a least solution because each CJcK is
continuous in the CPO D (by the Kleene-Knaster-Tarski theorem).

4.3.3 Resolution Example

For our example program, we get the following equation system:

X1 = ({X,Y} → Z)
X2 = CJX := [0, 10]KX1

X3 = CJY := 100KX2 ∪ CJY := Y + 10KX5

X4 = CJX ≥ 0KX3

X5 = CJX := X− 1KX4

X6 = CJX < 0KX3

(4.29)

After iteration, the loop invariant is:

X3 = {ρ | ρ(X) ∈ [0, 10], 10ρ(X) + ρ(Y) ∈ [100, 200] ∩ 10Z} (4.30)

4.3.4 Limit to Automation

We would like to perform automatic numerical invariant discovery, but face
theoretical and practical problems:

• Elements of P(V → I) are not computer-representable

• Transfer functions CJcK, CJcK are not computable

• Lattice iterations in P(V → I) are transfinite

• Finding the best invariant is an undecidable problem

Note that even when I is finite, a concrete analysis is not tractable:

• Representing elements in P(V → I) in extension is expensive

• Computing CJcK, CJcK explicitly is expensive

• The lattice P(V → I) has a large height ( many iterations)
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4.4 Abstraction

4.4.1 Numerical Abstract Domains

A numerical abstract domain is given by:

• A subset of P(V → I) (a set of environment sets)

• Together with a machine encoding

• Effective and sound abstract operators

• An iteration strategy ensuring convergence in finite time

Numerical Abstract Domain Examples

Abstract domains can be classified by their expressiveness:

signs congruencesintervals

non-relational

relational

linear equalities
polyhedra

octagons

Figure 4.2: Hierarchy of numerical abstract domains

Representation

An abstract domain is given by:

• A set D♯ of machine-representable abstract values

• A partial order (D♯,⊑,⊥♯,⊤♯) relating the amount of information
given by abstract values

• A concretization function γ : D♯ → P(V → I) giving a concrete mean-
ing to each abstract element

Required algebraic properties:

• γ should be monotonic for ⊑: X♯ ⊑ Y ♯ ⇒ γ(X♯) ⊆ γ(Y ♯)

• γ(⊥♯) = ∅
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• γ(⊤♯) = V → I

Note: γ need not be one-to-one.

Abstract Operators

We require:

• Sound, effective, abstract transfer functions C♯JcK, C♯JcK for all com-
mands c

• Sound, effective, abstract set operators ⊔♯, ⊓♯

• An algorithm to decide the ordering ⊑

Soundness criterion: F ♯ is a sound abstraction of a n-ary operator F if:

∀X♯
1, . . . , X

♯
n ∈ D♯, F (γ(X♯

1), . . . , γ(X
♯
n)) ⊆ γ(F ♯(X♯

1, . . . , X
♯
n)) (4.31)

This concerns both semantic and algorithmic aspects.

4.4.2 Abstract Semantics

The abstract semantic equation system is:

X♯ : L → D♯ (4.32)

X♯
ℓ ⊒

{
X♯

e if ℓ = e (where Xe ⊆ γ(X♯
e))⊔♯

(ℓ′,c,ℓ)∈A C
♯JcKX♯

ℓ′ if ℓ ̸= e (abstract transfer function)
(4.33)

Soundness Theorem: Any solution (X♯
ℓ)ℓ∈L is a sound over-approximation

of the concrete collecting semantics:

∀ℓ ∈ L, γ(X♯
ℓ) ⊇ Xℓ (4.34)

where Xℓ is the smallest solution of{
Xe given

Xℓ =
⋃

(ℓ′,c,ℓ)∈A CJcKXℓ′ if ℓ ̸= e
(4.35)
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4.4.3 Iteration Strategy

To effectively solve the abstract system, we require:

• An iteration ordering on abstract equations (which equation(s) are
applied at a given iteration)

• A widening operator∇ to speed up the convergence, if there are infinite
strictly increasing chains in D♯

∇ : (D♯ ×D♯)→ D♯ is a widening if:

• It is sound: γ(X♯) ∪ γ(Y ♯) ⊆ γ(X♯∇Y ♯)

• It enforces termination: ∀ sequence (Y ♯
i )i∈N the sequence X♯

0 = Y ♯
0 ,

X♯
i+1 = X♯

i∇Y
♯
i+1 stabilizes in finite time: ∃n < ω,X♯

n+1 = X♯
n (note:

∃n,∀m ≤ n,X♯
m+1 = X♯

m is not required)

4.4.4 Abstract Analysis

W ⊆ L is a set of widening points if every CFG cycle has a point in W .
Forward analysis:

X♯0
e

def
= X♯

e given, such that Xe ⊆ γ(X♯
e) (4.36)

X♯0
ℓ̸=e

def
= ⊥♯ (4.37)

X♯n+1
ℓ

def
=


X♯

e if ℓ = e⊔♯
(ℓ′,c,ℓ)∈A C

♯JcKX♯n
ℓ′ if ℓ /∈W, ℓ ̸= e

X♯n
ℓ ∇

⊔♯
(ℓ′,c,ℓ)∈A C

♯JcKX♯n
ℓ′ if ℓ ∈W, ℓ ̸= e

(4.38)

Termination: for some ω, ∀ℓ,X♯ω+1
ℓ = X♯ω

ℓ

Soundness: ∀ℓ ∈ L, Xℓ ⊆ γ(X♯ω
ℓ )

This can be refined by decreasing iterations with narrowing△ (presented
later).

Here, we apply every equation at each step, but other iteration schemes
are possible (worklist, chaotic iterations).

4.4.5 Exact and Best Abstractions

Galois connection: (D,⊆) γ←
→
α (D♯,⊑)

α, γ monotonic and ∀X,Y ♯, α(X) ⊑ Y ♯ ⇔ X ⊆ γ(Y ♯)
This implies elements X have a best abstraction: α(X), and operators

F have a best abstraction: F ♯ = α ◦ F ◦ γ.
Sometimes, no α exists:
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• {γ(Y ♯) | X ⊆ γ(Y ♯)} has no greatest lower bound

• Abstract elements with the same γ have no best representation

• α ◦ F ◦ γ may still be defined for some F (partial α)

Concretization-based optimality:

• Sound abstraction: γ ◦ F ♯ ⊇ F ◦ γ

• Exact abstraction: γ ◦ F ♯ = F ◦ γ

• Optimal abstraction: γ(X♯) minimal in {γ(Y ♯) | X ⊆ γ(Y ♯)}

4.5 Non-Relational Domains

Non-relational domains ”forget” all relationships between variables. They
cannot distinguish between sets with the same variable projections.

4.5.1 Value Abstraction

The idea is to start from an abstraction of values P(I).
A numerical value abstract domain consists of:

• B♯ abstract values, machine-representable

• γb : B♯ → P(I) concretization

• ⊑b partial order

• ⊥♯
b, ⊤

♯
b represent ∅ and I

• ⊔♯b, ⊓
♯
b abstractions of ∪ and ∩

• ∇b extrapolation operator (widening)

• αb : P(I)→ B♯ abstraction (optional)

Derived Abstract Domain

We define D♯ def
= (V → (B♯ \ {⊥♯

b})) ∪ {⊥
♯}

This is a point-wise extension: X♯ ∈ D♯ is a vector of elements in B♯
(e.g., using arrays of size |V|) with a smashed ⊥♯ (to avoid redundant rep-
resentations of ∅).

Definitions on D♯ derived from B♯:

γ(X♯)
def
=

{
∅ if X♯ = ⊥♯

{ρ | ∀V, ρ(V ) ∈ γb(X
♯(V ))} otherwise

(4.39)
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α(X)
def
=

{
⊥♯ if X = ∅
V.αb({ρ(V ) | ρ ∈ X}) otherwise

(4.40)

⊤♯ def
= V.⊤♯

b (4.41)

X♯ ⊑ Y ♯ def⇔ X♯ = ⊥♯ ∨ (X♯, Y ♯ ̸= ⊥♯ ∧ ∀V,X♯(V ) ⊑b Y
♯(V )) (4.42)

X♯ ⊔♯ Y ♯ def
=


Y ♯ if X♯ = ⊥♯

X♯ if Y ♯ = ⊥♯

V.X♯(V ) ⊔♯b Y
♯(V ) otherwise

(4.43)

X♯∇Y ♯ def
=


Y ♯ if X♯ = ⊥♯

X♯ if Y ♯ = ⊥♯

V.X♯(V )∇bY
♯(V ) otherwise

(4.44)

X♯ ⊓♯ Y ♯ def
=


⊥♯ if X♯ = ⊥♯ or Y ♯ = ⊥♯

⊥♯ if ∃V,X♯(V ) ⊓♯b Y
♯(V ) = ⊥♯

b

V.X♯(V ) ⊓♯b Y
♯(V ) otherwise

(4.45)

Cartesian Abstraction

Non-relational domains ”forget” all relationships between variables. This
can be formalized with the Cartesian abstraction:

Upper closure operator ρc : P(V → I)→ P(V → I):

ρc(X)
def
= {ρ ∈ V → I | ∀V ∈ V,∃ρ′ ∈ X, ρ(V ) = ρ′(V )} (4.46)

A domain is non-relational if ρ◦γ = γ, i.e., it cannot distinguish between
X and X ′ if ρc(X) = ρc(X

′).
Example: ρc({(X,Y ) | X ∈ {0, 2}, Y ∈ {0, 2}, X + Y ≤ 2}) = {0, 2} ×

{0, 2}
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Generic Non-Relational Abstract Assignments

Given sound abstract versions in B♯ of all arithmetic operators:

[c, c′]♯b : {x | c ≤ x ≤ c′} ⊆ γb([c, c
′]♯b) (4.47)

−♯
b : {−x | x ∈ γb(X

♯
b)} ⊆ γb(−♯

bX
♯
b) (4.48)

+♯
b : {x+ y | x ∈ γb(X

♯
b), y ∈ γb(Y

♯
b )} ⊆ γb(X

♯
b +

♯
b Y

♯
b ) (4.49)

. . . (4.50)

We can define an abstract semantics of expressions E♯JeK : D♯ → B♯:

E♯JeK⊥♯ def
= ⊥♯

b (4.51)

If X♯ ̸= ⊥♯:

E♯J[c, c′]KX♯ def
= [c, c′]♯b (4.52)

E♯JV KX♯ def
= X♯(V ) (4.53)

E♯J−eKX♯ def
= −♯

bE
♯JeKX♯ (4.54)

E♯Je1 + e2KX♯ def
= E♯Je1KX♯ +♯

b E
♯Je2KX♯ (4.55)

. . . (4.56)

We can then define an abstract assignment:

C♯JV := eKX♯ def
=

{
⊥♯ if V ♯

b = ⊥♯
b

X♯[V 7→ V ♯
b ] otherwise

(4.57)

where V ♯
b = E♯JeKX♯

Using a Galois connection (αb, γb), we can define best abstract arithmetic
operators:

[c, c′]♯b
def
= αb({x | c ≤ x ≤ c′}) (4.58)

−♯
bX

♯
b

def
= αb({−x | x ∈ γ(X♯

b)}) (4.59)

X♯
b +

♯
b Y

♯
b

def
= αb({x+ y | x ∈ γ(X♯

b), y ∈ γ(Y ♯
b )}) (4.60)

. . . (4.61)

Note: in general, E♯JeK is less precise than αb ◦ EJeK ◦ γ. For example,
with e = V − V and γb(X

♯(V )) = [0, 1], we have E♯JV − V KX♯ = [−1, 1]
while EJV − V Kγb(X♯(V )) = [0, 0].
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⊤

≤ 0 ≥ 0

̸= 0

< 0 > 0

= 0

⊥

Simple Signs⊤

≤ 0 ≥ 0

< 0

= 0

> 0

⊥

Extended Signs

Figure 4.3: Sign lattices

4.5.2 The Sign Domain

The sign domain tracks whether values are positive, negative, or zero. There
are two variants:

The extended sign domain is a refinement of the simple sign domain. The
diagram implicitly defines ⊔♯ and ⊓♯ as the least upper bound and greatest
lower bound for ⊑.

Operations on Simple Signs

Abstraction α forms a Galois connection between B♯ and P(I):

αb(S)
def
=



⊥♯
b if S = ∅

= 0 if S = {0}
≤ 0 else if ∀s ∈ S, s ≤ 0

≥ 0 else if ∀s ∈ S, s ≥ 0

⊤♯
b otherwise

(4.62)

Derived abstract arithmetic operators:

c♯b
def
= αb({c}) =


= 0 if c = 0

< 0 if c < 0

> 0 if c > 0

(4.63)
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X♯ +♯
b Y

♯ def
= αb({x+ y | x ∈ γb(X

♯), y ∈ γb(Y
♯)}) =



⊥♯
b if X♯ or Y ♯ = ⊥♯

b

= 0 if X♯ = Y ♯ == 0

≤ 0 else if X♯ and Y ♯ ∈ {= 0,≤ 0}
≥ 0 else if X♯ and Y ♯ ∈ {= 0,≥ 0}
⊤♯

b otherwise

(4.64)

Abstract Test Examples

C♯JX = 0KX♯ def
=

{
X♯[X 7→= 0] if X♯(X) ∈ {= 0,≤ 0,≥ 0,⊤♯

b}
⊥♯ otherwise

(4.65)

C♯JX − c = 0KX♯ def
=

{
C♯JX = 0KX♯ if c = 0

X♯ otherwise
(4.66)

C♯JX − Y = 0KX♯ def
=

{
C♯JX = 0KX♯ if X♯(Y ) ∈ {= 0,≤ 0,≥ 0}
X♯ otherwise

(4.67)

⊓♯
{
C♯JY = 0KX♯ if X♯(X) ∈ {= 0,≤ 0,≥ 0}
X♯ otherwise

(4.68)

Other cases: C♯Jexpr ▷◁ 0KX♯ def
= X♯ is always a sound abstraction.

Simple Sign Analysis Example

Example analysis using the simple sign domain:

X:=0;

while X<40 do

X:=X+1

done

Program rewritten as a control flow graph:
With the sign domain, the iterations will produce the following:
After several iterations, we derive that at program point 2, X ≥ 0.

4.5.3 The Constant Domain

The constant domain tracks when variables have specific constant values.
The lattice is flat but infinite:

B♯ = I ∪ {⊤♯
b,⊥

♯
b} (4.69)
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1

2 3

4

X := 0

X < 40
X := X + 1

X ≥ 40

ℓ X♯0
ℓ X♯1

ℓ X♯2
ℓ X♯3

ℓ X♯4
ℓ

1 ⊤ ⊤ ⊤ ⊤ ⊤
2 ⊥ X = 0 X = 0 X ≥ 0 X ≥ 0
3 ⊥ ⊥ X = 0 X = 0 X ≥ 0
4 ⊥ ⊥ X = 0 X = 0 X ≥ 0

Table 4.1: Sign domain iterations

Operations on Constants

Abstraction α forms a Galois connection:

αb(S)
def
=


⊥♯

b if S = ∅
c if S = {c}
⊤♯

b otherwise

(4.70)

Derived abstract arithmetic operators:

c♯b
def
= c (4.71)

γ(X♯) +♯
b γ(Y

♯)
def
=


⊥♯

b if X♯ or Y ♯ = ⊥♯
b

⊤♯
b else if X♯ or Y ♯ = ⊤♯

b

X♯ + Y ♯ otherwise

(4.72)

γ(X♯)×♯
b γ(Y

♯)
def
=


⊥♯

b if X♯ or Y ♯ = ⊥♯
b

0 else if X♯ or Y ♯ = 0

⊤♯
b else if X♯ or Y ♯ = ⊤♯

b

X♯ × Y ♯ otherwise

(4.73)
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⊤

. . . −99 −1 0 1 99 . . . ⊥

Figure 4.4: Constant domain lattice

Abstract Test Examples

C♯JX − c = 0KX♯ def
=

{
⊥♯ if X♯(X) /∈ {c,⊤♯

b}
X♯[X 7→ c] otherwise

(4.74)

C♯JX − Y − c = 0KX♯ def
=

{
C♯JX − (X♯(Y ) + c) = 0KX♯ if X♯(Y ) /∈ {⊥♯

b,⊤
♯
b}

X♯ otherwise

(4.75)

⊓♯
{
C♯JY − (X♯(X)− c) = 0KX♯ if X♯(X) /∈ {⊥♯

b,⊤
♯
b}

X♯ otherwise

(4.76)

Constant Analysis Example

B♯ has finite height, so the iterations (X♯i
ℓ ) converge in finite time (even

though B♯ is infinite).
Analysis example:

X:=0; Y:=10;

while X<100 do

Y:=Y-3;

X:=X+Y;

Y:=Y+3

done

The constant analysis finds, at the point marked •, the invariant:{
X = ⊤♯

b

Y = 7
(4.77)

Note: the analysis can find constants that do not appear syntactically
in the program.
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4.5.4 The Interval Domain

The interval domain tracks ranges of possible values for each variable. It
was introduced by [?].

B♯ def
= {[a, b] | a ∈ I ∪ {−∞}, b ∈ I ∪ {+∞}, a ≤ b} ∪ {⊥♯

b} (4.78)

The partial ordering is:

[a, b] ⊑b [c, d]
def⇔ a ≤ c and b ≤ d (4.79)

The least upper bound and greatest lower bound are:

[a, b] ⊔♯b [c, d]
def
= [min(a, c),max(b, d)] (4.80)

[a, b] ⊓♯b [c, d]
def
=

{
[max(a, c),min(b, d)] if max(a, c) ≤ min(b, d)

⊥♯
b otherwise

(4.81)

The top element is ⊤♯
b

def
= [−∞,+∞].

Note: intervals are open at infinite bounds +∞,−∞.

Interval Abstract Arithmetic Operators

[c, c′]♯b
def
= [c, c′] (4.82)

−♯
b[a, b]

def
= [−b,−a] (4.83)

[a, b] +♯
b [c, d]

def
= [a+ c, b+ d] (4.84)

[a, b]−♯
b [c, d]

def
= [a− d, b− c] (4.85)

[a, b]×♯
b [c, d]

def
= [min(ac, ad, bc, bd),max(ac, ad, bc, bd)] (4.86)

Division requires special care to handle division by zero:

[a, b]/♯b[c, d]
def
=



⊥♯
b if c = d = 0

[min(a/c, a/d, b/c, b/d), else if 0 ≤ c

max(a/c, a/d, b/c, b/d)]

[−b,−a]/♯b[−d,−c] else if d ≤ 0

([a, b]/♯b[c, 0]) ⊔
♯
b ([a, b]/

♯
b[0, d]) otherwise

(4.87)

where ±∞ × 0 = 0, 0/0 = 0, ∀x, x/ ± ∞ = 0, ∀x > 0, x/0 = +∞,
∀x < 0, x/0 = −∞.

Operators are strict: −♯
b⊥

♯
b = ⊥

♯
b, [a, b] +

♯
b ⊥

♯
b = ⊥

♯
b, etc.
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Interval Abstract Tests

If X♯(X) = [a, b] and X♯(Y ) = [c, d], we can define:

C♯JX − c ≤ 0KX♯ def
=

{
⊥♯ if a > c

X♯[X 7→ [a,min(b, c)]] otherwise
(4.88)

C♯JX − Y ≤ 0KX♯ def
=

{
⊥♯ if a > d

X♯[X 7→ [a,min(b, d)], Y 7→ [max(c, a), d]] otherwise

(4.89)

C♯Je ▷◁ 0KX♯ def
= X♯ otherwise (4.90)

Note: fallback operators C♯Je ▷◁ 0KX♯ = X♯ and C♯JX := eKX♯ =

X♯[X 7→ ⊤♯
b] are always sound.

Generic Non-Relational Abstract Test

A more sophisticated approach associates an abstract value in B♯ to each
expression node using two traversals of the expression tree:

• First, a bottom-up evaluation using forward operators ⊙♯
b

• Apply ▷◁ 0
♯
b to the root

• Then, a top-down refinement using backward operators ⊙♯
b

For each expression leaf, we get an abstract value V ♯
b :

• For a variable V , replace X♯(V ) with X♯(V ) ⊓♯b V
♯
b

• For a constant [c, c′], check that [c, c′]♯b ⊓
♯
b V

♯
b ̸= ⊥

♯
b

Return ⊥♯ if some ⊓♯bV
♯
b returns ⊥♯

b.
This approach can be refined further with local iterations.

Interval Test Example

Example: C♯JX + Y − Z ≤ 0KX♯ with X♯ = {X 7→ [0, 10], Y 7→ [2, 10], Z 7→
[3, 5]}

Bottom-up evaluation:

X 7→ [0, 10] (4.91)

Y 7→ [2, 10] (4.92)

X + Y 7→ [2, 20] (4.93)

Z 7→ [3, 5] (4.94)

(X + Y )− Z 7→ [−3, 17] (4.95)
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Test ≤ 0: [−3, 17] ∩ [−∞, 0] = [−3, 0]
Top-down backward refinement:

(X + Y )− Z 7→ [−3, 0] (4.96)

Z 7→ [3, 5] (4.97)

X + Y 7→ [3− 0, 5− (−3)] = [3, 8] (4.98)

X 7→ [0, 3] (4.99)

Y 7→ [2, 5] (4.100)

Interval Widening

Widening on non-relational domains extends a value widening∇b : B♯×B♯ →
B♯ point-wise:

X♯∇Y ♯ def
= V.(X♯(V )∇bY

♯(V )) (4.101)

Interval widening example:

⊥♯
b∇bX

♯ def
= X♯ (4.102)

[a, b]∇b[c, d]
def
=

{
a if a ≤ c

−∞ otherwise
,

{
b if b ≥ d

+∞ otherwise
(4.103)

Unstable bounds are set to ±∞.

Analysis with Widening Example

Analysis example with widening points W = {2}:

X:=0;

while X<40 do

X:=X+1

done

ℓ X♯0
ℓ X♯1

ℓ X♯2
ℓ X♯3

ℓ X♯4
ℓ X♯5

ℓ

1 ⊤♯ ⊤♯ ⊤♯ ⊤♯ ⊤♯ ⊤♯

2 ⊥♯∇ = 0 = 0 = 0 ∈ [0,∞) ∈ [0,∞) ∈ [0,∞)
3 ⊥♯ ⊥♯ = 0 = 0 ∈ [0, 39] ∈ [0, 39]
4 ⊥♯ ⊥♯ ⊥♯ ⊥♯ ≥ 40 ≥ 40

Table 4.2: Interval analysis with widening
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More precisely, at the widening point:

X♯1
2 = ⊥♯∇b([0, 0] ⊔♯b ⊥

♯) = ⊥♯∇b[0, 0] = [0, 0] (4.104)

X♯2
2 = [0, 0]∇b([0, 0] ⊔♯b ⊥

♯) = [0, 0]∇b[0, 0] = [0, 0] (4.105)

X♯3
2 = [0, 0]∇b([0, 0] ⊔♯b [1, 1]) = [0, 0]∇b[0, 1] = [0,+∞) (4.106)

X♯4
2 = [0,+∞)∇b([0, 0] ⊔♯b [1, 40]) = [0,+∞)∇b[0, 40] = [0,+∞) (4.107)

Note that the most precise interval abstraction would be X ∈ [0, 40] at
point 2, and X = 40 at point 4.

Narrowing

Using a widening makes the analysis less precise. Some precision can be
retrieved using a narrowing operator △.

Definition: A narrowing △ is a binary operator D♯×D♯ → D♯ such that:

• (X♯ ⊓♯ Y ♯) ⊑ (X♯△Y ♯) ⊑ X♯

• For all sequences (X♯
i ), the decreasing sequence (Y ♯

i ) defined by Y ♯
0

def
=

X♯
0, Y

♯
i+1

def
= Y ♯

i △X♯
i+1 is stationary

This is not the dual of a widening!
Examples of narrowing:

• Trivial narrowing: X♯△Y ♯ def
= X♯

• Finite-time intersection narrowing:

X♯i△Y ♯ def
=

{
X♯i ⊓♯ Y ♯ if i ≤ N

X♯i if i > N
(4.108)

• Interval narrowing:

[a, b]△b[c, d]
def
=

{
c if a = −∞
a otherwise

,

{
d if b = +∞
b otherwise

(4.109)

Point-wise extension to D♯: X♯△Y ♯ def
= V.(X♯(V )△bY

♯(V ))

Iterations with Narrowing

Let X♯
ℓ be the result after widening stabilization:

X♯
ℓ ⊒

{
⊤♯ if ℓ = e⊔♯

(ℓ′,c,ℓ)∈A C
♯JcKX♯

ℓ′ if ℓ ̸= e
(4.110)
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The following sequence is computed:

Y ♯0
ℓ

def
= X♯

ℓ (4.111)

Y ♯i+1
ℓ

def
=


⊤♯ if ℓ = e⊔♯

(ℓ′,c,ℓ)∈A C
♯JcKY ♯i

ℓ′ if ℓ /∈W

Y ♯i
ℓ △

⊔♯
(ℓ′,c,ℓ)∈A C

♯JcKY ♯i
ℓ′ if ℓ ∈W

(4.112)

The sequence (Y ♯i
ℓ ) is decreasing and converges in finite time, and all

(Y ♯i
ℓ ) are solutions of the abstract semantic system.

Analysis with Narrowing Example

Example with W = {2}:

X:=0;

while X<40 do

X:=X+1

done

ℓ Y ♯0
ℓ Y ♯1

ℓ Y ♯2
ℓ Y ♯3

ℓ

1 ⊤♯ ⊤♯ ⊤♯ ⊤♯

2 ∈ [0,∞)△ ∈ [0, 40] ∈ [0, 40] ∈ [0, 40]
3 ∈ [0, 39] ∈ [0, 39] ∈ [0, 39] ∈ [0, 39]
4 ≥ 40 ≥ 40 = 40 = 40

Table 4.3: Interval analysis with narrowing

Narrowing at point 2 gives:

Y ♯1
2 = [0,+∞)△b([0, 0] ⊔♯b [1, 40]) = [0,+∞)△b[0, 40] = [0, 40] (4.113)

Y ♯2
2 = [0, 40]△b([0, 0] ⊔♯b [1, 40]) = [0, 40]△b[0, 40] = [0, 40] (4.114)

Then Y ♯2
2 : X ∈ [0, 40] gives Y ♯3

4 : X = 40.
We’ve found the most precise invariants!

Improving Widening

Widening can sometimes lead to imprecise results. For example:

X:=40;

while X<>0 do

X:=X-1

done
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The interval domain with standard widening cannot prove that X ≥ 0
at the loop point, while the simpler sign domain can! This happens because
the interval widening jumps immediately to [−∞, 40].

We can improve the interval widening to check the stability of specific
values like 0:

[a, b]∇′
b[c, d]

def
=


a if a ≤ c

0 if 0 ≤ c < a

−∞ otherwise

,


b if b ≥ d

0 if 0 ≥ b > d

+∞ otherwise

(4.115)

This extended widening checks the stability of 0, enhancing precision in
many practical cases.

Widening with Thresholds

Another approach is to use widening with thresholds. Given a finite set T
of thresholds containing +∞ and −∞:

[a, b]∇T
b [c, d]

def
=

{
a if a ≤ c

max{x ∈ T | x ≤ c} otherwise
,

{
b if b ≥ d

min{x ∈ T | x ≥ d} otherwise

(4.116)

The widening tests thresholds and stops at the first stable bound in T .
This approach is useful when:

• It’s easy to find a ”good” set T (e.g., array bound-checking, arithmetic
overflow checking)

• An over-approximation of the bound is sufficient

But it only works if some non-∞ bound in T is stable.

4.5.5 The Congruence Domain

The congruence domain tracks whether variables have values that satisfy
congruence properties (e.g., being even, odd, or congruent to some value
modulo some number).

The domain is:

B♯ def
= {(aZ+ b) | a ∈ N, b ∈ Z} ∪ {⊥♯

b} (4.117)

Where aZ+b is the congruence class of b modulo a, i.e., x ∈ aZ+b when
a divides x− b.

The partial order is:

(aZ+ b) ⊑b (a
′Z+ b′)

def⇔ a′/a and b ≡ b′[a′] (4.118)
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Where a/a′ means a divides a′, and b ≡ b′[a′] means b is congruent to b′

modulo a′.
The top element is ⊤♯

b

def
= (1Z+ 0).

This lattice satisfies the Ascending Chain Condition (ACC) but not the
Descending Chain Condition (DCC).

Congruence Operators

Abstract arithmetic operators:

[c, c′]♯b
def
=

{
0Z+ c if c = c′

⊤♯
b otherwise

(4.119)

−♯
b(aZ+ b)

def
= aZ+ (−b) (4.120)

(aZ+ b) +♯
b (a

′Z+ b′)
def
= (a ∧ a′)Z+ (b+ b′) (4.121)

(aZ+ b)−♯
b (a

′Z+ b′)
def
= (a ∧ a′)Z+ (b− b′) (4.122)

(aZ+ b)×♯
b (a

′Z+ b′)
def
= (aa′ ∧ ab′ ∧ a′b)Z+ bb′ (4.123)

Division is more complex and not always optimal.

Congruence Analysis Example

Example:

X:=0; Y:=2;

while X<40 do

X:=X+2;

if X<5 then Y:=Y+18 fi;

if X>8 then Y:=Y-30 fi

done

We find the loop invariant:{
X ∈ 2Z
Y ∈ 6Z+ 2

(4.124)

This shows that Y is always congruent to 2 modulo 6, which is the
greatest common divisor of 18 and 30.
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4.6 Reduced Products of Domains

4.6.1 Non-Reduced Product of Domains

Product representation: Cartesian product D♯
1×2 of D♯

1 and D♯
2:

D♯
1×2

def
= D♯

1 ×D
♯
2 (4.125)

γ1×2(X
♯
1, X

♯
2)

def
= γ1(X

♯
1) ∩ γ2(X

♯
2) (4.126)

α1×2(X)
def
= (α1(X), α2(X)) (4.127)

(X♯
1, X

♯
2) ⊑1×2 (Y

♯
1 , Y

♯
2 )

def⇔ X♯
1 ⊑1 Y

♯
1 and X♯

2 ⊑2 Y
♯
2 (4.128)

Abstract operators are performed in parallel on both components:

(X♯
1, X

♯
2) ⊔

♯
1×2 (Y

♯
1 , Y

♯
2 )

def
= (X♯

1 ⊔
♯
1 Y

♯
1 , X

♯
2 ⊔

♯
2 Y

♯
2 ) (4.129)

C♯JcK1×2(X
♯
1, X

♯
2)

def
= (C♯JcK1(X♯

1), C
♯JcK2(X

♯
2)) (4.130)

Non-Reduced Product Example

The product analysis is no more precise than two separate analyses:

X:=1;

while X-10<=0 do

X:=X+2

done;

•
if X-12>=0 then

〈
X:=0

〉
fi

interval congruence product

• X ∈ [11, 12] X ≡ 1[2] X = 11
〈 X = 12 X ≡ 1[2] ∅
〉 X = 0 X = 0 X = 0

Table 4.4: Non-reduced product example

The product domain can prove that the if branch is never taken because
X = 11 from the interval-congruence combination, and 11 < 12.
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4.6.2 Fully-Reduced Product

The fully-reduced product uses a reduction operator ρ that propagates in-
formation between domains:

ρ : D♯
1×2 → D

♯
1×2 (4.131)

ρ(X♯
1, X

♯
2)

def
= (α1(γ1(X

♯
1) ∩ γ2(X

♯
2)), α2(γ1(X

♯
1) ∩ γ2(X

♯
2))) (4.132)

We can reduce the result of each abstract operator, except widening:

(X♯
1, X

♯
2) ⊔

♯
1×2 (Y

♯
1 , Y

♯
2 )

def
= ρ(X♯

1 ⊔
♯
1 Y

♯
1 , X

♯
2 ⊔

♯
2 Y

♯
2 ) (4.133)

C♯JcK1×2(X
♯
1, X

♯
2)

def
= ρ(C♯JcK1(X♯

1), C
♯JcK2(X

♯
2)) (4.134)

We refrain from reducing after a widening ∇, as this may jeopardize
convergence.

Fully-Reduced Product Example

Reduction example between the interval and congruence domains:

ρb([a, b], cZ+ d)
def
=


(⊥♯

b,⊥
♯
b) if a′ > b′

([a′, a′], 0Z+ a′) if a′ = b′

([a′, b′], cZ+ d) if a′ < b′
(4.135)

where a′
def
= min{x ≥ a | x ≡ d[c]} and b′

def
= max{x ≤ b | x ≡ d[c]}.

Extended point-wise to ρ on D♯.
Application:

ρb([10, 11], 2Z+ 1) = ([11, 11], 0Z+ 11) (4.136)

ρb([1, 3], 4Z) = (⊥♯
b,⊥

♯
b) (4.137)

4.7 Relational Domains

4.7.1 Linear Equality Domain

The linear equality domain tracks linear equality relationships between vari-
ables. It was proposed by Karr [?].

We look for invariants of the form:∧
j

(
n∑

i=1

αijVi = βj

)
, αij , βj ∈ I (4.138)

We use a domain of affine subspaces of V → I:

D♯ def
= {affine subspaces of V → I} (4.139)
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Linear Equality Analysis Example

Forward analysis example:

X:=10; Y:=100;

while X<>0 do

X:=X-1;

Y:=Y+10

done

ℓ X♯0
ℓ X♯1

ℓ X♯2
ℓ X♯3

ℓ X♯4
ℓ

1 ⊤♯ ⊤♯ ⊤♯ ⊤♯ ⊤♯

2 ⊥♯ (10, 100) (10, 100) 10X + Y = 200 10X + Y = 200
3 ⊥♯ ⊥♯ (10, 100) (10, 100) 10X + Y = 200
4 ⊥♯ ⊥♯ ⊥♯ ⊥♯ (0, 200)

Table 4.5: Linear equality analysis

Note that:

X♯3
2 = {(10, 100)} ⊔♯ {(9, 110)} = {(X,Y ) | 10X + Y = 200} (4.140)

This represents a line including (10, 100) and (9, 110).

4.7.2 Polyhedron Domain

The polyhedron domain tracks linear inequality relationships between vari-
ables. It was proposed by Cousot and Halbwachs [?].

We look for invariants of the form:∧
j

(
n∑

i=1

αijVi ≤ βj

)
(4.141)

We use the polyhedron domain:

D♯ def
= {closed convex polyhedra of V → I} (4.142)

Note: polyhedra need not be bounded ( polytopes).

Polyhedron Example Analysis

Example program:

X:=2; I:=0;

while • I<10 do

if [0,1]=0 then X:=X+2 else X:=X-3 fi;

I:=I+1

done〈
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Using widening and narrowing at •:

X♯1
• = {X = 2, I = 0} (4.143)

X♯2
• = {X = 2, I = 0}∇({X = 2, I = 0} ⊔♯ {X ∈ [−1, 4], I = 1}) (4.144)

= {X = 2, I = 0}∇{I ∈ [0, 1], 2− 3I ≤ X ≤ 2I + 2} (4.145)

= {I ≥ 0, 2− 3I ≤ X ≤ 2I + 2} (4.146)

X♯3
• = {I ≥ 0, 2− 3I ≤ X ≤ 2I + 2}△ (4.147)

({X = 2, I = 0} ⊔♯ {I ∈ [1, 10], 2− 3I ≤ X ≤ 2I + 2}) (4.148)

= {I ∈ [0, 10], 2− 3I ≤ X ≤ 2I + 2} (4.149)

At 〈 we find: I = 10 ∧X ∈ [−28, 22].

4.7.3 Zone Domain

The zone domain tracks constraints of the form Vi−Vj ≤ c or ±Vi ≤ c with
c ∈ I. It was introduced by Miné [?].

A subset of In bounded by such constraints is called a zone.
Representation is via potential graphs or Difference Bound Matrices

(DBMs):

• A DBM m is square with size n× n and elements in I ∪ {+∞}

• mij = c < +∞ denotes the constraint Vj − Vi ≤ c

• mij = +∞ if there is no upper bound on Vj − Vi

Concretization: γ(m)
def
= {(v1, . . . , vn) ∈ In | ∀i, j, vj − vi ≤ mij}

Unary constraints add a constant null variable V0:

• m has size (n+ 1)× (n+ 1)

• Vi ≤ c is denoted as Vi − V0 ≤ c, i.e., mi0 = c

• −Vi ≤ c is denoted as V0 − Vi ≤ c, i.e., m0i = c

Normal form uses shortest-path closure: m∗
ij

def
= minhi=i1,...,iN=ji

∑N−1
k=1 mikik+1

This exists only when m has no cycle with strictly negative weight.
The octagon domain, as we began to explain, tracks constraints of the

form ±Vi ± Vj ≤ c with c ∈ I. The constraint encoding uses a variable
change to get back to potential constraints:

• Let V ′ def= V ′1, . . . , V ′2n where Vi 7→ V ′2i− 1 and −Vi 7→ V ′2i

• The constraint Vi − Vj ≤ c (for i ̸= j) is encoded as V ′2i− 1 −
V ′2j − 1 ≤ c and V ′2j − V ′2i ≤ c
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• The constraint Vi+Vj ≤ c (for i ̸= j) is encoded as V ′2i− 1−V ′2j ≤ c
and V ′2j − 1− V ′2i ≤ c

• The constraint −Vi−Vj ≤ c (for i ̸= j) is encoded as V ′2j−V ′2i− 1 ≤
c and V ′2i− V ′2j − 1 ≤ c

• The constraint Vi ≤ c is encoded as V ′2i− 1− V ′2i ≤ 2c

• The constraint −Vi ≤ c is encoded as V ′2i− V ′2i− 1 ≤ 2c

We use a matrix m of size (2n)× (2n) with elements in I∪+∞, and define:

γ±(m)
def
= (v1, . . . , vn) | (v1,−v1, . . . , vn,−vn) ∈ γ(m) (4.150)

Note: To ensure a coherent representation, we impose that ∀i, j,mij = mȷı

where ı = i⊕ 1 (i.e., flip the parity of i).

Example of Octagon Analysis

As an example, consider the following program:

var X: int, Y: int;

begin

X=10;

Y=0;

while (X>=0) do

X = X-1;

if brandom then Y = Y+1; endif;

done;

end

Using the octagon domain, we can derive the loop invariant:

−1 ≤ X ≤ 10, ; 0 ≤ Y ≤ 11, ;−12 ≤ X − Y ≤ 10, ;−1 ≤ X + Y ≤ 10
(4.151)

This provides more precise relational information than what would be pos-
sible with just interval analysis.

4.8 Summary and Comparison of Domains

The selection of an appropriate domain involves a trade-off between precision
and computational complexity:

• Non-relational domains (sign, constant, interval, congruence) are
efficient but cannot capture relationships between variables.
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Domain Non-relational Linear equalities Polyhedra Octagons heightInvariants

V ∈ B♯b
∑

i αiVi = β
∑

i αiVi ≤ β ±Vi ± Vj ≤ c heightMemory cost O(n)
O(n2) O(2n) O(n2) heightTime cost O(n) O(n3)
O(2n) O(n3) height

Table 4.6: Summary of numerical abstract domains

• Weakly relational domains (zone, octagon) offer a good compro-
mise, capturing some relationships with reasonable efficiency.

• Fully relational domains (linear equalities, polyhedra) can express
rich relationships but are computationally expensive.

Many modern analyzers use combinations of domains (via reduced products)
or domain switching strategies to balance precision and cost for different
program constructs.

4.9 Practical Considerations

4.9.1 Widening Strategies

The choice of widening strategy can significantly impact analysis precision:

• Widening points: Selecting an optimal set of widening points can
reduce precision loss. Typically, one point per cycle in the control flow
graph is sufficient.

• Widening with thresholds: Using constants from the program as
thresholds often improves precision significantly.

• Delayed widening: Applying standard iteration for a few steps be-
fore starting to widen can preserve important invariants.

• Narrowing: Always follow widening with narrowing iterations to re-
cover precision.

4.9.2 Domain Selection Guidelines

Selecting an appropriate abstract domain depends on the program properties
of interest:

• For simple range analysis (e.g., array bounds checking), the interval
domain is often sufficient.

• For analyzing modular arithmetic or bit-level operations, the congru-
ence domain is valuable.
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• When loop invariants involve simple variable relationships (e.g., x ≤ y,
x+ y ≤ c), octagons offer a good trade-off.

• For sophisticated numerical invariants with arbitrary linear constraints,
the polyhedron domain is appropriate, despite its cost.

• When analyzing data structures, specialized domains for shapes, heaps,
or arrays may be necessary.

In practice, domain combinations (via reduced products) often provide the
best results.

4.9.3 Implementation Considerations

When implementing abstract interpretation:

• Floating-point arithmetic: Real-world analyzers must handle floating-
point issues carefully, often using sound approximations or interval
arithmetic.

• Sparse representations: For large programs, sparse matrix repre-
sentations can significantly reduce memory consumption for relational
domains.

• Incremental computations: Recomputing only affected parts of
abstract states after small program changes improves analyzer respon-
siveness.

• Parallelization: Some abstract domains support parallel computa-
tions, which can improve analysis speed on modern hardware.

4.10 Real-World Applications

Abstract interpretation has been successfully applied in various software
verification contexts:

• ASTRÉE: An abstract interpretation-based analyzer that proved the
absence of runtime errors in the Airbus A380 flight control software.

• CodeHawk: A commercial tool targeting security vulnerabilities in
C and Java code.

• Clousot: A static analyzer for .NET programs that verifies absence
of runtime errors.

• Frama-C: An open-source framework for analyzing C programs with
various abstract domains.
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• IKOS: An LLVM-based framework for static analysis through ab-
stract interpretation.

Modern compilers like GCC and LLVM also incorporate abstract interpre-
tation principles for their optimization passes.

4.11 Advanced Topics

4.11.1 Handling Advanced Language Features

Real-world programming languages include features that require specialized
abstract domains:

• Pointers and aliasing: Memory abstractions such as shape analysis
and separation logic.

• Dynamic allocation: Domains that track heap properties and detect
memory leaks.

• Arrays and containers: Specialized domains like array regions or
array segmentation.

• Concurrency: Thread-modular analysis, rely-guarantee reasoning,
or analysis of synchronization primitives.

• Objects and inheritance: Class hierarchy analysis and properties
preserved by polymorphism.

4.11.2 Trace Partitioning

Trace partitioning improves precision by separately analyzing program paths:

• Path-sensitive analysis: Maintaining distinct abstract states for
different execution paths.

• Context-sensitive analysis: Differentiating function calls based on
their calling context.

• Value-based partitioning: Separating analysis based on specific
variable values.

This approach reduces the loss of precision from merging control flows but
increases the analysis cost.
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4.11.3 Modular Analysis

For large programs, modular analysis is essential:

• Procedure summaries: Computing reusable abstract transformers
for functions.

• Contract-based verification: Using pre/post-conditions to analyze
components independently.

• Bottom-up analysis: Analyzing called procedures before their callers
to build summaries.

• Top-down analysis with placeholders: Using hypotheses about
called procedures during the analysis of callers.

As seen in our slides, relational domains are particularly important for cre-
ating precise procedure summaries that capture input-output relationships.

4.12 Conclusion

Abstract interpretation provides a powerful theoretical framework for static
program analysis. By systematically approximating the semantics of pro-
grams, it enables sound verification of properties that would be undecidable
in general. The key advantages of abstract interpretation include:

• Soundness: When properly implemented, it guarantees the absence
of false negatives.

• Automation: Once set up, analyses require minimal user interven-
tion.

• Scalability: With appropriate domains and widening strategies, it
can scale to large programs.

• Adaptability: The framework accommodates diverse program prop-
erties through custom abstract domains.

The main challenges involve selecting appropriate abstract domains, im-
plementing efficient algorithms, and managing the precision-performance
trade-off. As software systems become increasingly complex and deployed
in safety-critical contexts, abstract interpretation-based verification tools
play a vital role in ensuring reliability, security, and correctness.
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4.13 Exercises

The following exercises can help solidify understanding of abstract interpre-
tation concepts:

Exercise 1. Consider the program:

X := 0;

Y := 0;

while X < 10 do

X := X + 1;

Y := Y + X;

done

Analyze this program using:

1. The interval domain

2. The linear equality domain

What invariants can each domain establish at the loop exit?

Exercise 2. Design a widening operator for the sign domain that preserves
more information than the standard widening. Apply it to an example
program to demonstrate its effectiveness.

Exercise 3. Consider a reduced product of the interval and congruence
domains. Show how the reduction operator would process the abstract states
X ∈ [1, 10] and X ∈ 2Z to obtain a more precise result.

Exercise 4. Implement a simple interval analysis for a small imperative
language, including widening and narrowing operations. Test it on programs
with loops to verify its effectiveness.

Exercise 5. Consider the octagon constraints for two variables X and Y .
Manually construct the DBM representation for the constraints X ≤ 10,
Y ≤ 5, X + Y ≤ 12, X − Y ≤ 7. Then apply the shortest-path closure
algorithm to compute the normal form.

Exercise 6. For the following program:

X := 0;

Y := 50;

while X < 100 do

X := X + 1;

if [0,1] = 0 then

Y := Y + 1;

else

Y := Y - 1;

endif;

done
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What properties can be established using the interval domain? What about
using the polyhedron domain? Explain the differences in precision.
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Chapter 5

Advanced Topics in Software
Verification

This chapter extends our exploration of software verification with advanced
techniques for computing fixpoints and the emerging field of neural network
verification. We begin by examining efficient algorithms for fixpoint com-
putation, which form the basis of many static analyses. Then, we delve into
the formal verification of neural networks, examining how abstract interpre-
tation techniques can be applied to ensure their reliability and robustness.

5.1 Efficient Fixpoint Computation

5.1.1 Fixpoint Algorithms

Fixpoint computation is a fundamental operation in static program analy-
sis, underpinning dataflow analysis, abstract interpretation, and many other
verification techniques. Let F : Cn → Cn be a monotone operator on the
product complete lattice Cn. According to the Kleene-Knaster-Tarski The-
orem, its least fixpoint lfp(F ) =

∨
i∈N F i(⊥) can be computed by iteratively

applying F until convergence.
However, naive implementations of this iterative process can be ineffi-

cient. We present three progressively more efficient algorithms for fixpoint
computation.

Naive Iteration

The naive algorithm directly implements the Kleene-Knaster-Tarski Theo-
rem:

(x1, . . . , xn) := ⟨⊥, . . . ,⊥⟩ (t1, . . . , tn) := (x1, . . . , xn) (x1, . . . , xn) :=
F (x1, . . . , xn) (x1, . . . , xn) = (t1, . . . , tn)

This algorithm recomputes all components in each iteration, even when
some components may not change.
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Chaotic Iteration

Chaotic iteration improves on the naive approach by exploiting the product
structure of the lattice and updating components in a specific order:

x1 := ⊥; . . . ;xn := ⊥ t1 := x1; . . . ; tn := xn x1 := F1(x1, . . . , xn); . . . ;xn :=
Fn(x1, . . . , xn) x1 ̸= t1 ∨ . . . ∨ xn ̸= tn

With this approach, the update of xk can exploit the already updated
values of x1, . . . , xk−1. The ordering of variables can significantly affect
efficiency, and different orderings may be appropriate for different problems.

Worklist Algorithm

Both previous algorithms recompute all components in each iteration, even
when some components cannot change. The worklist algorithm addresses
this by tracking dependencies between components and only recomputing
when necessary:

First, we define a dependency function between components:

dep(xj) ≜ {xk | the k-th equation defining Fk(x1, . . . , xn) depends on the variable xj}
(5.1)

For example, in the system:

F1(x1, . . . , x5) = x1 ∪ x3 (5.2)

F2(x1, . . . , x5) = ∅ (5.3)

F3(x1, . . . , x5) = x2 ∩ x5 (5.4)

F4(x1, . . . , x5) = x4 (5.5)

F5(x1, . . . , x5) = F3(x1, x1, x1, x1, x4) (5.6)

We have:

dep(x1) = {x1, x5} (5.7)

dep(x2) = {x3} (5.8)

dep(x3) = {x1} (5.9)

dep(x4) = {x4, x5} (5.10)

dep(x5) = {x3} (5.11)

The worklist algorithm uses these dependencies to focus computation:
x1 := ⊥; . . . ;xn := ⊥ W := [v1, . . . , vn] vi represents the i-th component

W ̸= [] vk := head(W ) xk is the component to update W := tail(W )
y := Fk(x1, . . . , xn) y ̸= xk if xk has been updated v ∈ dep(vk) W :=
[v].append(W ) add dependent components to worklist xk := y

This algorithm significantly reduces the number of component updates
required to reach a fixpoint.
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5.1.2 Example: Sign Analysis with Different Algorithms

Consider the following simple program and its associated control flow graph:

X := 0;

while X < 40 do

X := X + 1

done

1

2

34

X := 0

X ¡ 40

X := X + 1
X 40

Figure 5.1: Control flow graph for the example program

Using the sign domain, the dataflow equations are:

Xi+1
2 = C♯[[X := 0]]Xi

1 ∪ C♯[[X := X + 1]]Xi
3 (5.12)

Xi+1
3 = C♯[[X < 40]]Xi

2 (5.13)

Xi+1
4 = C♯[[X ≥ 40]]Xi

2 (5.14)

The dependency function is:

dep(X♯
1) = {X

♯
2} (5.15)

dep(X♯
2) = {X

♯
3, X

♯
4} (5.16)

dep(X♯
3) = {X

♯
2} (5.17)

dep(X♯
4) = ∅ (5.18)

With naive iteration, six iterations are needed to reach the fixpoint:

ℓ X♯0
ℓ X♯1

ℓ X♯2
ℓ X♯3

ℓ X♯4
ℓ X♯5

ℓ

1 ⊤♯ ⊤♯ ⊤♯ ⊤♯ ⊤♯ ⊤♯

2 ⊥♯ X = 0 X = 0 X ≥ 0 X ≥ 0 X ≥ 0
3 ⊥♯ ⊥♯ X = 0 X = 0 X ≥ 0 X ≥ 0
4 ⊥♯ ⊥♯ X = 0 X = 0 X ≥ 0 X ≥ 0

Using chaotic iteration with ordering 1, 2, 3, 4, only three iterations are
needed:
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ℓ X♯0
ℓ X♯1

ℓ X♯2
ℓ

1 ⊤♯ ⊤♯ ⊤♯

2 ⊥♯ X = 0 X ≥ 0
3 ⊥♯ X = 0 X ≥ 0
4 ⊥♯ ⊥♯ X ≥ 0

The worklist algorithm would further reduce computations by prioritiz-
ing components that actually change.

5.2 Neural Network Verification

5.2.1 Introduction to Neural Networks

A neural network is a directed graph where each node performs an operation.
Overall, the network represents a function f : Rn → Rm. Consider the
following simple neural network:

x v y

Figure 5.2: A simple neural network

The red node is an input node; it passes input x to node v. Node v
performs some operation and produces a value for the output node y. For
example, v might compute fv(x) = 2x + 1, and y might apply a ReLU
activation function fy(x) = max(0, x).

Together, this network computes:

f(x) = fy(fv(x)) = max(0, 2x+ 1) (5.19)

Transformations and Activations

Neural networks typically consist of two types of operations:

• Affine transformations: Functions that multiply inputs by con-
stants and add constant values (e.g., f(x) = 2x+ 1)

• Activation functions: Non-linear functions that introduce non-linearity
into the network

Common activation functions include:

• ReLU (Rectified Linear Unit): ReLU(x) = max(0, x)

• Sigmoid: σ(x) = 1
1+e−x
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x

ReLU(x)

Figure 5.3: ReLU activation function

x

σ(x)

Figure 5.4: Sigmoid activation function

5.2.2 The Need for Neural Network Verification

Despite their impressive performance, neural networks can be vulnerable to
adversarial examples—inputs that are imperceptibly different from normal
inputs but cause the network to make incorrect predictions.

[Image of MNIST digit with adversarial perturbation]

Original image Perturbed image Difference

Figure 5.5: Example of an adversarial attack on an MNIST digit classifica-
tion network

This vulnerability raises significant concerns in safety-critical applica-
tions like autonomous vehicles, medical diagnosis systems, and security ap-
plications. Formal verification techniques aim to mathematically prove that
neural networks satisfy certain robustness properties, such as:

Definition 27 (Local Robustness). A classifier C : X → L is robust on an
input vector x for an adversarial region P (x) ⊆ X when ∀x′ ∈ P (x), C(x′) =
C(x).
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Here, P (x) typically represents a small perturbation around x, such as:

P∞
ϵ (x) = {x′ ∈ Rn | ∥x′ − x∥∞ ≤ ϵ} = {x′ ∈ Rn | ∀i.x′i ∈ [xi − ϵ, xi + ϵ]}

(5.20)

5.2.3 Abstract Interpretation for Neural Networks

Abstract interpretation offers a promising approach for neural network ver-
ification. We now adapt the abstract interpretation framework to neural
networks.

The Interval Domain for Neural Networks

The interval domain is a natural starting point for neural network verifica-
tion. We define abstract transformers for different neural network opera-
tions:

Affine Functions For an affine function f(x1, . . . , xn) =
∑

i cixi, we de-
fine:

f ♯([l1, u1], . . . , [ln, un]) =

[∑
i

l′i,
∑
i

u′i

]
(5.21)

where l′i = min(cili, ciui) and u′i = max(cili, ciui).

Example 10. Consider f(x, y) = 3x+ 2y. Then:

f ♯([5, 10], [20, 30]) = [3 · 5 + 2 · 20, 3 · 10 + 2 · 30] = [55, 90] (5.22)

Monotonic Functions For a monotonically increasing function f : R→
R (like ReLU or sigmoid), we define:

f ♯([l, u]) = [f(l), f(u)] (5.23)

Example 11. For the ReLU function on interval [3, 5]:

ReLU♯([3, 5]) = [ReLU(3),ReLU(5)] = [3, 5] (5.24)

Composing Abstract Transformers For a function composition h(x) =
f(g(x)), we define:

h♯([l, u]) = f ♯(g♯([l, u])) (5.25)

Example 12. Let g(x) = 3x, f(x) = ReLU(x), and h(x) = f(g(x)). Then:

h♯([2, 3]) = f ♯(g♯([2, 3])) (5.26)

= f ♯([6, 9]) (5.27)

= [6, 9] (5.28)
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Abstract Transformers for Neural Networks

Given a neural network defined as a graph G = (V,E) representing a func-

tion fG : Rn → Rm, we define f ♯
G([l1, u1], . . . , [ln, un]) as follows:

• For each input node vi, define out♯(vi) = [li, ui]

• For each non-input node v with incoming edges (v1, v), . . . , (vk, v):

out♯(v) = f ♯
v(out

♯(v1), . . . , out
♯(vk)) (5.29)

where f ♯
v is the abstract transformer for the function fv

• The output of f ♯
G is the set of intervals out♯(v1), . . . , out

♯(vm), where
v1, . . . , vm are the output nodes

Example 13. Consider the neural network:

v1

v2

v3 v4

Where fv3(x) = 2x1 + x2 and fv4(x) = ReLU(x).

To evaluate f ♯
G([0, 1], [2, 3]):

out♯(v1) = [0, 1] (5.30)

out♯(v2) = [2, 3] (5.31)

out♯(v3) = [2 · 0 + 2, 2 · 1 + 3] = [2, 5] (5.32)

out♯(v4) = [ReLU(2),ReLU(5)] = [2, 5] (5.33)

Limitations of the Interval Domain

The interval domain, while simple to implement, has limitations due to
its non-relational nature. It cannot capture relationships between different
values, which leads to imprecision.

Example 14. Consider the following network:

v1 v2 v3

Where fv2(x) = −x and fv3(x) = x1 + x2.
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Clearly, for any input x, fG(x) = 0 since fv3 receives x and −x as inputs.
However, using the interval domain:

out♯(v1) = [0, 1] (5.34)

out♯(v2) = [−1, 0] (5.35)

out♯(v3) = [0, 1] + [−1, 0] = [−1, 1] (5.36)

The interval domain cannot capture the relationship between the inputs
to v3, leading to an imprecise result.

5.3 Advanced Abstract Domains for Neural Net-
works

5.3.1 Beyond Intervals: The Zonotope Domain

While the interval domain is simple and efficient, it often produces overly
conservative approximations. More sophisticated domains like zonotopes
can provide better precision while maintaining reasonable efficiency.

A zonotope in Rn is a centrally symmetric convex polytope represented
as the Minkowski sum of a center point and a finite set of line segments
(generators):

Definition 28 (Zonotope). A zonotope Z is defined as:

Z =

{
c+

m∑
i=1

αigi | αi ∈ [−1, 1]

}
(5.37)

where c ∈ Rn is the center and gi ∈ Rn are the generators.

For example, a zonotope in R2 with center (0, 0) and generators (1, 0)
and (0, 1) represents the square [−1, 1]× [−1, 1].

Operations on Zonotopes

The zonotope domain supports several important operations:

• Affine transformations: Given a zonotope Z with center c and
generators g1, . . . , gm, and an affine function f(x) = Ax+ b:

f(Z) = {Ac+ b+

m∑
i=1

αiAgi | αi ∈ [−1, 1]} (5.38)

• Join: The join of two zonotopes is approximated by a new zonotope
that contains both.

• ReLU transformation: For ReLU functions, a sound approximation
is computed by considering different cases based on whether inputs can
be positive, negative, or both.
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Example of Neural Network Verification with Zonotopes

Consider a simple neural network with a single hidden layer and ReLU
activations, as shown in Figure 5.6.

[Image showing zonotope propagation through a neural network]

The green shapes represent zonotope abstractions at each layer

Figure 5.6: Illustration of zonotope propagation through a neural network

The verification process consists of:

1. Converting the input region (e.g., L∞ ball) to a zonotope

2. Propagating this zonotope through the network using abstract trans-
formers

3. Checking if the output zonotope satisfies the desired property

For example, to verify robustness, we check if the output zonotope con-
tains points with different classifications than the original input.

5.3.2 The AI² Framework

The AI² framework (Abstract Interpretation for neural network Analysis)
combines multiple abstract domains to achieve both efficiency and precision
in neural network verification. It handles realistic neural networks, including
convolutional networks with ReLU activations and max pooling layers.

The key components of AI² include:

• Sound abstract transformers for common neural network operations

• A flexible combination of different abstract domains

• Domain-specific optimizations for neural networks

Example 15. For a convolutional neural network trained on MNIST, AI²
can verify that small perturbations (L∞ norm ≤ 0.1) to a correctly classified
digit do not change the classification.

5.4 Applications of Formal Verification for Neural
Networks

5.4.1 Robustness Certification

One of the primary applications of neural network verification is to certify
robustness against adversarial examples.
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Definition 29 (Certified Robustness). A sound robustness verifier ⟨C♯, P ♯⟩
for a classifier C with respect to perturbation P certifies that for all x ∈ X,
if C♯(P ♯(x)) = {C(x)} then ∀x′ ∈ P (x), C(x′) = C(x).

This enables us to provide formal guarantees about neural network be-
havior under specified perturbations.

5.4.2 Safety Verification

Beyond robustness to adversarial examples, verification techniques can en-
sure that neural networks satisfy critical safety properties, such as:

• Ensuring autonomous vehicles maintain safe distances

• Verifying that medical diagnosis systems correctly identify critical con-
ditions

• Checking that control systems remain within operational limits

5.4.3 Evaluating Defense Mechanisms

Formal verification can also assess the effectiveness of proposed defenses
against adversarial attacks, providing mathematical guarantees rather than
empirical evaluations.

5.5 Conclusion and Future Directions

This chapter has explored advanced topics in software verification, focusing
on efficient fixpoint computation algorithms and neural network verification.
We have seen how abstract interpretation provides a powerful framework for
analyzing complex systems, including the increasingly important domain of
neural networks.

As neural networks continue to be deployed in safety-critical applica-
tions, the need for formal verification techniques will only grow. Future
research directions include:

• Developing more precise abstract domains tailored to neural network
properties

• Improving the scalability of verification techniques to handle larger
networks

• Extending verification to other types of neural networks, including
recurrent and attention-based architectures

• Integrating formal verification into the neural network training process
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The intersection of formal methods and machine learning presents both
significant challenges and opportunities for ensuring the reliability and safety
of AI systems.

5.6 Exercises

Exercise 7. Consider the following system of equations:

X1 = X2 ∪X3 (5.39)

X2 = {a} ∪X4 (5.40)

X3 = {b} ∪X5 (5.41)

X4 = {c} (5.42)

X5 = {d} ∪X1 (5.43)

Compute the least fixpoint using (a) naive iteration, (b) chaotic iteration,
and (c) the worklist algorithm. Compare the number of updates required
by each algorithm.

Exercise 8. Consider a simple neural network with one hidden layer of two
neurons and ReLU activations:

f(x1, x2) = w3 · ReLU(w1 · [x1, x2] + b1) + w4 · ReLU(w2 · [x1, x2] + b2) + b3
(5.44)

where w1 = [1, 2], w2 = [2,−1], b1 = 0, b2 = 1, w3 = 1, w4 = 2, and b3 = −1.
Use the interval domain to verify that for inputs in the region [0, 1]×[0, 1],

the output is positive.

Exercise 9. Explain why the interval domain fails to precisely capture the
behavior of the network in Example 8.I. Design a more precise abstract
domain that would accurately represent the relationship between the inputs
to node v3.

Exercise 10. Consider a neural network used for binary classification of
images. Formalize the property that the network is robust against brightness
perturbations (where all pixel values are increased by a small amount δ) and
describe how you would verify this property using abstract interpretation.

Exercise 11. Research and describe a real-world application where formal
verification of neural networks would be particularly important. Discuss
the specific properties that would need to be verified and the challenges in
applying existing verification techniques.
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Chapter 6

Completeness in Abstract
Interpretation

6.1 Introduction to Completeness

In the realm of software verification and static analysis, the concepts of
soundness and completeness play crucial roles in determining the qual-
ity and reliability of analytical results. While soundness has traditionally
been the primary focus—ensuring that analyses do not miss potential er-
rors—completeness is equally important for eliminating false alarms and
providing precise results.

Completeness in abstract interpretation refers to the property where
an abstract analysis captures exactly the same information as the concrete
semantics, just represented at a higher level of abstraction. When an analysis
is complete, every property expressible in the abstract domain corresponds
perfectly to a property in the concrete domain.

This chapter explores the theoretical foundations of completeness, its re-
lationship with soundness, practical applications, and techniques for proving
completeness for various program constructs and domains.

6.2 Soundness versus Completeness

6.2.1 Defining Soundness and Completeness

For an abstract operation to be sound, it must over-approximate the concrete
operation. Formally, if α is the abstraction function, γ the concretization
function, and f a concrete operation with f ♯ as its abstract counterpart,
soundness is expressed as:

α(f(x)) ⊑ f ♯(α(x)) (6.1)
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Completeness, on the other hand, requires that the abstract operation
precisely captures the concrete operation:

α(f(x)) = f ♯(α(x)) (6.2)

6.2.2 The Value of Completeness

The distinction between soundness and completeness directly impacts the
precision of static analysis:

• Sound over-approximations are valuable for proving correctness,
ensuring no true errors are missed.

• Complete over-approximations are excellent for proving that all
reported alarms are genuine, eliminating false positives.

In essence, completeness provides precision. A complete analysis will
never report a false alarm—if it flags a potential issue, that issue genuinely
exists in the concrete semantics.

6.3 Concrete and Abstract Models

6.3.1 The Concrete Model

The concrete model represents the actual execution behavior of programs,
typically expressed as sets of program states or traces. These models are gen-
erally undecidable, meaning we cannot algorithmically determine all prop-
erties of interest for arbitrary programs.

For a program P , its concrete semantics JP K represents all possible ex-
ecutions or states. This semantics is precise but difficult to compute or
represent finitely.

6.3.2 Abstraction Approaches

Various approaches to abstraction exist, not all of which constitute abstract
interpretation:

Partial Execution

Executing the program on some inputs can detect bugs but is unsound—it
cannot prove the absence of bugs since it doesn’t explore all execution paths.

Testing

Similar to partial execution, testing is efficient but unsound, as it cannot
exhaustively cover all possible program behaviors.
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Model Abstraction

Abstracting the model itself by generalizing sets of states yields α(JP K). This
approach, while potentially more efficient, remains undecidable for many
properties.

Abstract Interpretation

The core of abstract interpretation is to compute an abstract semantics JP Kα

that approximates the concrete semantics. The fundamental relationship is:

α(JP K) ⊆ JP Kα (6.3)

When equality holds (α(JP K) = JP Kα), the abstraction is complete for
program P .

6.4 Theoretical Foundations of Completeness

6.4.1 Galois Connections and Best Correct Approximations

A core concept in abstract interpretation is the Galois connection between
concrete and abstract domains. Given concrete domain C and abstract
domain A, a Galois connection consists of an abstraction function α : C → A
and a concretization function γ : A→ C such that:

∀c ∈ C, a ∈ A : α(c) ⊑ a ⇐⇒ c ⊑ γ(a) (6.4)

When a Galois connection exists, the best correct approximation of a
concrete operation f is:

f ♯ = α ◦ f ◦ γ (6.5)

6.4.2 Abstract Join Completeness

An important property of Galois connections is that abstract joins are always
complete:

α(c1 ⊔ c2) = α(γ(α(c1)) ⊔ γ(α(c2))) = α(c1) ⊔α α(c2) (6.6)

This property implies that incompleteness in abstract interpretation is
never due to abstract joins but comes from other operations such as tests
and assignments.
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6.5 Completeness Classes

6.5.1 Definition of Completeness Classes

For an abstraction α, we define the completeness classes for programs, arith-
metic expressions, and Boolean expressions:

C(α) = {P program | α(JP K) = JP Kα} (6.7)

A(α) = {a arith.exp. | α(JaK) = JaKα} (6.8)

B(α) = {b Bool.exp. | α(JbK) = JbKα} (6.9)

6.5.2 Properties of Completeness Classes

Completeness classes have several important properties:

• For trivial abstractions (α = λx.x or α = λx.⊤), C(α) includes all
programs.

• For any non-trivial abstraction, there exist incomplete programs.

• Completeness is not extensional: programs P and Q might have the
same concrete semantics (JP K = JQK), but one could be complete while
the other is not.

• Both C(α) and C(α) (its complement) are not recursively enumerable,
making automated completeness verification challenging.

The non-extensional nature of completeness is particularly significant,
as it means that program transformations that preserve concrete semantics
might not preserve completeness.

6.6 Completeness Analysis for Program Constructs

6.6.1 Boolean Guards and Tests

Boolean guards are a major source of incompleteness. Even when a guard
like x > 0 is exactly representable in an abstract domain (such as intervals),
the abstract operation may not be complete:

αInt(Jx > 0K{0, 2, 3}) = αInt({2, 3}) = [2, 3] ⊊ Jx > 0KαIntαInt({0, 2, 3}) = Jx > 0KαInt [0, 3] = [1, 3]
(6.10)
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6.6.2 Assignments

Assignments present particular challenges for completeness analysis. The
completeness of an assignment depends on both the expression being as-
signed and the abstract domain in use.

Non-relational Domains

For non-relational domains (those that don’t track relationships between
variables), assignments of the form x := a are complete if a ∈ A(α). This
rule is sound because non-relational domains consider each variable inde-
pendently.

Example:

x := null;

if (x = null) then x := new Int;

In a simple nullness domain, this program is complete because both the
assignment and the test are representable in the domain.

Relational Domains

For relational domains like octagons, the situation is more complex. An
expression can be complete while an assignment using that expression is
not.

Example: In the octagon domain, the expression x+ y is complete, but
the assignment z := x + y is not complete. This incompleteness arises
because the octagon domain can express the constraint x + y but cannot
fully capture how this expression relates to other variables after assignment.

6.7 Proving Completeness

6.7.1 Core Proof System

A core proof system for verifying completeness can be defined with rules
such as:

⊢α skip

⊢α P ⊢α Q

⊢α P ;Q

⊢α C b ∈ B(α) ¬b ∈ B(α)
⊢α if b then C

⊢α C b ∈ B(α) ¬b ∈ B(α)
⊢α while b do C

(6.11)

This system is sound (if ⊢α P then P ∈ C(α)) but not complete (there
exist programs in C(α) for which ⊢α P cannot be derived).
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6.7.2 Challenges in Automating Completeness Proofs

Automating completeness proofs is challenging because:

• Completeness classes are not recursively enumerable.

• Completeness is harder to prove than termination.

• Domain-specific analyses are needed, especially for assignments in re-
lational domains.

Despite these challenges, certain under-approximations of completeness
classes can be computed, providing partial verification of completeness.

6.8 Examples of Completeness Analysis

6.8.1 Complete and Incomplete Loop Examples

Consider two similar programs:
Complete:

x := 9;

while (x > 0)

x := x - 1;

// query: x = 0?

Incomplete:

x := 9;

while (x > 0)

x := x - 2;

// query: x = -1?

Both programs appear similar, and each individual operation seems com-
plete for the interval domain:

• Assignment to a constant is complete in intervals

• Both tests x > 0 and x ≤ 0 are exactly represented in intervals

• The decrements x− 1 and x− 2 are complete in intervals

• Abstract join is always complete

However, the second program is incomplete due to the interaction be-
tween operations, specifically how the test interacts with the state transfor-
mations across loop iterations.
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6.8.2 Relational Domain Example

The octagon domain example illustrates the challenges with relational do-
mains:

S = {(x/2, y/1, z/0), (x/1, y/4, z/2)} (6.12)

Oct(Jz := x+ yKS) ⊊ Oct(Jz := x+ yKOct(S)) (6.13)

A specific element (x/2, y/3, z/5) belongs to Jz := x+ yKOct(S) but not
to Oct(Jz := x+ yKS), demonstrating incompleteness.

6.9 Conclusion

Completeness in abstract interpretation provides a powerful framework for
verifying the precision of static analyses. While challenging to achieve and
prove, complete abstractions offer significant benefits by eliminating false
alarms and providing exact information within the constraints of the ab-
stract domain.

Understanding when and why completeness fails helps analysts design
better abstractions and verification systems. Though completeness classes
are generally not computable, domain-specific techniques and proof systems
can help establish completeness for important program fragments and prop-
erties.

Future research in this area may focus on developing more powerful proof
techniques, identifying broader classes of programs for which completeness
can be guaranteed, and creating domain-specific refinements that achieve
completeness for critical properties.
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